Description
A CWS code for modular qudits, defined using a modular-qudit cluster state and a set of modular-qudit \(Z\)-type Pauli strings defined by a \(q\)-ary classical code over \(\mathbb{Z}_q\).
The modular-qudit CWS construction takes in \( \mathcal{Q} = (\mathcal{G},\mathcal{C}) \), where \(\mathcal{G}\) is a graph, and where \(\mathcal{C}\) is an \((n,K,d)_{\mathbb{Z}_q}\) \(q\)-ary code over \(\mathbb{Z}_q\). From the graph, we form the modular-qudit cluster state \( |\mathcal{G} \rangle \). From the \(q\)-ary code, we form modular-qudit Pauli \(Z\)-type operators \( W_i = Z^{c_{i,1}} \otimes \cdots \otimes Z^{c_{i,n}} \), where \(c_{i,j} \) is the \(j\)-th coordinate of the \(i\)-th classical codeword. The codewords are then \( | i \rangle = W_i | \mathcal{G} \rangle \).
In an alternative convention (not used here), CWS codes are defined from an underlying modular-qudit stabilizer state that is not a necessarily a cluster state.
Notes
See Ref. [1] for qudit CWS code tables.Cousins
- Modular-qudit cluster-state code— A single modular-qudit cluster state is used to construct a modular-qudit CWS code.
- Perfect quantum code— Generalized concatenatenations of modular-qudit CWS codes yield a family of codes that have larger logical dimension than stabilizer codes and that asymptotically approach the modular-qudit Hamming bound [4].
- Concatenated quantum code— Generalized concatenatenations of modular-qudit CWS codes yield a family of codes that have larger logical dimension than stabilizer codes and that asymptotically approach the modular-qudit Hamming bound [4].
- Modular-qudit stabilizer code— Modular-qudit CWS codes whose underlying classical code is a linear \(q\)-ary code over \(\mathbb{Z}_q\) are modular-qudit stabilizer codes containing a cluster-state codeword; see [5; Corr. 4-5], which defines CWS codes as admitting an underlying stabilizer state that is not a necessarily a cluster state.
Member of code lists
Primary Hierarchy
References
- [1]
- S. Y. Looi, L. Yu, V. Gheorghiu, and R. B. Griffiths, “Quantum-error-correcting codes using qudit graph states”, Physical Review A 78, (2008) arXiv:0712.1979 DOI
- [2]
- D. Hu, W. Tang, M. Zhao, Q. Chen, S. Yu, and C. H. Oh, “Graphical nonbinary quantum error-correcting codes”, Physical Review A 78, (2008) arXiv:0801.0831 DOI
- [3]
- X. Chen, B. Zeng, and I. L. Chuang, “Nonbinary codeword-stabilized quantum codes”, Physical Review A 78, (2008) arXiv:0808.3086 DOI
- [4]
- M. Grassl, P. Shor, G. Smith, J. Smolin, and B. Zeng, “Generalized concatenated quantum codes”, Physical Review A 79, (2009) arXiv:0901.1319 DOI
- [5]
- D. F. G. Santiago and G. S. S. Otoni, “A new approach to codeword stabilized quantum codes using the algebraic structure of modules”, (2015) arXiv:1505.00283
- [6]
- S. Beigi, J. Chen, M. Grassl, Z. Ji, Q. Wang, and B. Zeng, “Symmetries of Codeword Stabilized Quantum Codes”, (2013) arXiv:1303.7020 DOI
- [7]
- Y. Li, I. Dumer, and L. P. Pryadko, “Clustered Error Correction of Codeword-Stabilized Quantum Codes”, Physical Review Letters 104, (2010) arXiv:0907.2038 DOI
- [8]
- Li, Yunfan. Codeword Stabilized Quantum Codes and Their Error Correction. Diss. UC Riverside, 2010.
- [9]
- M. Grassl and M. Rötteler, “Nonadditive quantum codes”, Quantum Error Correction 261 (2013) DOI
Page edit log
- Victor V. Albert (2024-03-28) — most recent
- Victor V. Albert (2024-02-11)
Cite as:
“Modular-qudit CWS code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/qudit_cws