Here is a list of code families which contain perfect quantum codes.
Code Description
Five-qubit perfect code Five-qubit stabilizer code that is the smallest qubit stabilizer code to correct a single-qubit error. Its generators that are symmetric under cyclic permutation of qubits, \begin{align} \begin{split} S_1 &= IXZZX \\ S_2 &= XZZXI \\ S_3 &= ZZXIX \\ S_4 &= ZXIXZ~. \end{split} \tag*{(1)}\end{align}
Perfect code An \((n,K,2t+1)_q\) code is perfect if parameters \(n\), \(K\), \(t\), and \(q\) are such that the Hamming (a.k.a. sphere-packing) bound \begin{align} \sum_{j=0}^{t}(q-1)^{j}{n \choose j}\leq q^{n}/K \tag*{(2)}\end{align} becomes an equality. In other words, the code's packing radius matches its covering radius.
Perfect quantum code A non-degenerate code constructed out of \(q\)-dimensional qudits and having parameters \(((n,K,2t+1))\) is perfect if \(n\), \(K\), \(t\), and \(q\) are such that the quantum Hamming bound \begin{align} \sum_{j=0}^{t}(q^2-1)^{j}{n \choose j}\leq q^{n}/K \tag*{(3)}\end{align} becomes an equality. For example, for a qubit \(q=2\) code with one logical qubit (\(K=2\)) and \(t=1\), the bound becomes \(3n+1 \leq 2^{n-1}\). The bound can be saturated only at certain \(n\).
\([[15, 7, 3]]\) Hamming-based CSS code Self-dual Hamming-based CSS code that admits permutation-based CZ logical gates.
\([[2^r, 2^r-r-2, 3]]\) quantum Hamming code A family of stabilizer codes of distance \(3\) that saturate the asymptotic quantum Hamming bound. Can be obtained from the CSS construction using a first-order \([2^r,r+1,2^{r-1}]\) RM code and a \([2^r,2^r-1,2]\) even-weight code [1].

References

[1]
A. M. Steane, “Simple quantum error-correcting codes”, Physical Review A 54, 4741 (1996) arXiv:quant-ph/9605021 DOI
  • Home
  • Code graph
  • Code lists
  • Concepts glossary
  • Search

Classical Domain

  • Binary Kingdom
  • Galois-field Kingdom
  • Matrix Kingdom
  • Analog Kingdom
  • Spherical Kingdom
  • Ring Kingdom
  • Group Kingdom

Quantum Domain

  • Qubit Kingdom
  • Modular-qudit Kingdom
  • Galois-qudit Kingdom
  • Bosonic Kingdom
  • Spin Kingdom
  • Group Kingdom
  • Category Kingdom

Classical-quantum Domain

  • Binary c-q Kingdom
  • Bosonic/analog c-q Kingdom

  • Add new code
  • Additional resources
  • Team
  • About
≡
Error correction zoo by Victor V. Albert, Philippe Faist, and many contributors. This work is licensed under a CC-BY-SA License. See how to contribute.