Description
Five-qubit cyclic stabilizer code that is the smallest qubit stabilizer code to correct a single-qubit error.
Code generators are symmetric under cyclic permutation of qubits, \begin{align} \begin{split} S_1 &= XZZXI \\ S_2 &= IXZZX \\ S_3 &= XIXZZ \\ S_4 &= ZXIXZ~. \end{split} \tag*{(1)}\end{align} The code's automorphism group is the dihedral group of order 10 [3]. The encoder-respecting form of the code is a pentagon graph with an additional central input node [4].
It is the unique code for its parameters, up to equivalence [5; Corr. 10]. Any 5 qubit \(2T\)-transversal stabilizer code with distance \(d>1\) must be the five-qubit code [6,7].
This code is sometimes referred to as the DiVincenzo-Shor code after a paper that studied the code's syndrome extraction circuits [8]
Protection
Smallest stabilizer code that protects against a single error on any one qubit. Detects two-qubit errors.Encoding
Four generalized control gates, four Hadamard, and one \(Z\) gate [9; Fig. 10.16].Four CNOT and five CPHASE gates [10].Reinforcement learning encoding circuits [11].Fault-tolerant logical one and logical minus state preparation in all-to-all and 2D grid connectivity [11].Transversal Gates
Pauli gates are transversal, along with a non-Pauli Hadamard-phase "facet" gate \(SH\) and three-qubit Clifford operation \(M_3\) [12,13]. These realize the \(2T\) binary tetrahedral subgroup of \(SU(2)\).The code does not admit any non-Clifford transversal gates [5]; in particular, see [14] for the case of collective \(Z\) rotations.All transversal gates can be interpreted as monodromies under a particular notion of parallel transport [15; Exam. 6.4.2].Decoding
Fault-tolerant syndrome extraction circuits [8,18].Syndrome extraction circuit using only CNOT-SWAP gates [19].Combined dynamical decoupling and error correction protocol on individually-controlled qubits with always-on Ising couplings [10].Symmetric decoder correcting all weight-one Pauli errors. The resulting logical error channel after coherent noise has been explicitly derived [20].Inspired by the honeycomb Floquet code, various weight-two measurement schemes have been designed [21].Fault Tolerance
Pieceable fault-tolerant CZ, CNOT, and CCZ gates [17].Syndrome measurement can be done with two ancillary flag qubits [22]. The depth of syndrome extraction circuits can be lowered by using past syndrome values [23].Fault-tolerant logical one and logical minus state preparation in all-to-all and 2D grid connectivity [11].Inspired by the honeycomb Floquet code, various weight-two measurement schemes have been designed [21].Threshold
Numerical study of concatenated thresholds of logical CNOT gates for various codes against depolarizing noise [24].Realizations
NMR: Implementation of perfect error correcting code on 5 spin subsystem of labeled crotonic acid for quantum network benchmarking [25]. Single-qubit logical gates [26]. Magic-state distillation using 7-qubit device [27].Superconducting qubits [28].Trapped-ion qubits: non-transversal CNOT gate between two logical qubits, including rounds of correction and fault-tolerant primitives such as flag qubits and pieceable fault tolerance, on a 12-qubit device by Quantinuum [29]. Real-time magic-state distillation [30].Nitrogen-vacancy centers in diamond: fault-tolerant single-qubit Clifford operations using two ancillas [31]. The fault-tolerant circuit yields better fidelity than the non-fault-tolerant circuit.Cousins
- Majorana stabilizer code— The five-qubit code Hamiltonian is local when expressed in terms of mutually commuting Majorana operators [32].
- Qubit code— Every \(((5,2,3))\) code is single-qubit-Clifford-equivalent to the five-qubit code [5; Corr. 10].
- Concatenated qubit code— The recursively concatenated five-qubit code has a measurement threshold of one [33]. Code performance against general Pauli channels has been worked out [34,35].
- Cluster-state code— The five-qubit code admits a codeword that is the cluster state of the pentagon graph [36,37].
- Codeword stabilized (CWS) code— The five-qubit perfect code is equivalent via a single-qubit Clifford circuit to a CWS code defined from a five-cycle graph and a classical repetition code [38,39][40; Table I].
- Hastings-Haah Floquet code— Inspired by the honeycomb Floquet code, various weight-two measurement schemes have been designed for the five-qubit code [21].
- Hexacode— Applying the qubit Hermitian construction to the hexacode yields a \([[6,0,4]]\) quantum code [41] corresponding to the six-qubit AME state. The five-qubit code can be obtained either by applying the qubit Hermitian construction to the shortened hexacode [42; Exam. A] or by tracing out a qubit of the \([[6,0,4]]\) code [43; Appx. A].
- \([[10,1,4]]_{G}\) tenfold code— The \([[10,1,4]]_{G}\) Abelian group code for \(G=\mathbb{Z}_2\) is defined using a graph that is closely related to the \([[5,1,3]]\) five-qudit code [44]. The former code can be obtained by converting the latter into a code that is oblivious to collective \(Z\)-type rotations [14; Exam. 6].
- Concatenated GKP code— GKP codes have been concatenated with the five-qubit code [45].
- \(U(d)\)-covariant approximate erasure code— The five-qubit code can be used to construct an approximate code that is also covariant with respect to the unitary group.
- Constant-excitation (CE) code— The five-qubit code can be concatenated with a particular decoherence-free subspace (DFS) [46–49] to yield a 20-qubit CE code [50,51].
- \([[3, 1, 3;2]]\) EA code— The \([[3, 1, 3;2]]\) EA code and the five-qubit code have the same stabilizers [52,53].
- \([[4,2,2]]\) Four-qubit code— The \([[4,2,2]]\) code can be derived from the five-qubit code using a protocol that converts an \([[n,k,d]]\) code into an \([[n-1, k+1, d-1]]\) code [13; Sec. 3.5][54; Fig. 3].
- \([[6,1,3]]\) Six-qubit stabilizer code— The \([[6,1,3]]\) six-qubit code is one of two six-qubit distance-three codes that are unique up to equivalence [55], with the other code a trivial extension of the five-qubit code [56].
- Holographic hybrid code— The holographic hybrid code is constructed out of alternating isometries of the five-qubit and \([[4,1,1,2]]\) Bacon-Shor codes.
- Quantum divisible code— A fault-tolerant \(T\) gate on the five-qubit code can be obtained by concatenating with particular quantum divisible codes [57].
Member of code lists
- 2D stabilizer codes
- Constant-excitation quantum codes and friends
- Cyclic quantum codes and friends
- Hamiltonian-based codes
- Holographic codes
- Perfect quantum codes and friends
- Quantum codes
- Quantum codes with fault-tolerant gadgets
- Quantum codes with notable decoders
- Quantum codes with other thresholds
- Quantum codes with transversal gates
- Quantum LDPC codes
- Quantum MDS codes and friends
- Realized quantum codes
- Small-distance quantum codes and friends
- Stabilizer codes
- Surface code and friends
- Topological codes
Primary Hierarchy
References
- [1]
- R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, “Perfect Quantum Error Correction Code”, (1996) arXiv:quant-ph/9602019
- [2]
- C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction”, Physical Review A 54, 3824 (1996) arXiv:quant-ph/9604024 DOI
- [3]
- H. Hao, “Investigations on Automorphism Groups of Quantum Stabilizer Codes”, (2021) arXiv:2109.12735
- [4]
- A. B. Khesin, J. Z. Lu, and P. W. Shor, “Universal graph representation of stabilizer codes”, (2024) arXiv:2411.14448
- [5]
- E. M. Rains, “Quantum codes of minimum distance two”, (1997) arXiv:quant-ph/9704043
- [6]
- E. Kubischta, I. Teixeira, and J. M. Silvester, “Quantum Weight Enumerators for Real Codes with \(X\) and \(Z\) Exactly Transversal”, (2024) arXiv:2306.12526
- [7]
- Ian Teixeira, private communication, 2024
- [8]
- D. P. DiVincenzo and P. W. Shor, “Fault-Tolerant Error Correction with Efficient Quantum Codes”, Physical Review Letters 77, 3260 (1996) arXiv:quant-ph/9605031 DOI
- [9]
- M. Nakahara, “Quantum Computing”, (2008) DOI
- [10]
- A. De and L. P. Pryadko, “Universal set of dynamically protected gates for bipartite qubit networks: Soft pulse implementation of the [[5,1,3]] quantum error-correcting code”, Physical Review A 93, (2016) arXiv:1509.01239 DOI
- [11]
- R. Zen, J. Olle, L. Colmenarez, M. Puviani, M. Müller, and F. Marquardt, “Quantum Circuit Discovery for Fault-Tolerant Logical State Preparation with Reinforcement Learning”, (2024) arXiv:2402.17761
- [12]
- D. Gottesman, “Theory of fault-tolerant quantum computation”, Physical Review A 57, 127 (1998) arXiv:quant-ph/9702029 DOI
- [13]
- D. Gottesman, “Stabilizer Codes and Quantum Error Correction”, (1997) arXiv:quant-ph/9705052
- [14]
- J. Hu, Q. Liang, N. Rengaswamy, and R. Calderbank, “Mitigating Coherent Noise by Balancing Weight-2 Z-Stabilizers”, IEEE Transactions on Information Theory 68, 1795 (2022) arXiv:2011.00197 DOI
- [15]
- D. Gottesman and L. L. Zhang, “Fibre bundle framework for unitary quantum fault tolerance”, (2017) arXiv:1309.7062
- [16]
- S. Bravyi and A. Kitaev, “Universal quantum computation with ideal Clifford gates and noisy ancillas”, Physical Review A 71, (2005) arXiv:quant-ph/0403025 DOI
- [17]
- T. J. Yoder, R. Takagi, and I. L. Chuang, “Universal Fault-Tolerant Gates on Concatenated Stabilizer Codes”, Physical Review X 6, (2016) arXiv:1603.03948 DOI
- [18]
- M. B. Plenio, V. Vedral, and P. L. Knight, “Conditional generation of error syndromes in fault-tolerant error correction”, Physical Review A 55, 4593 (1997) arXiv:quant-ph/9608028 DOI
- [19]
- A. V. Antipov, E. O. Kiktenko, and A. K. Fedorov, “Realizing a class of stabilizer quantum error correction codes using a single ancilla and circular connectivity”, Physical Review A 107, (2023) arXiv:2207.13356 DOI
- [20]
- C. Liu, “Exact performance of the five-qubit code with coherent errors”, (2022) arXiv:2203.01706
- [21]
- L. Grans-Samuelsson, D. Aasen, and P. Bonderson, “A fault-tolerant pairwise measurement-based code on eight qubits”, (2024) arXiv:2409.13681
- [22]
- R. Chao and B. W. Reichardt, “Quantum Error Correction with Only Two Extra Qubits”, Physical Review Letters 121, (2018) arXiv:1705.02329 DOI
- [23]
- D. Bhatnagar, M. Steinberg, D. Elkouss, C. G. Almudever, and S. Feld, “Low-Depth Flag-Style Syndrome Extraction for Small Quantum Error-Correction Codes”, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) 63 (2023) arXiv:2305.00784 DOI
- [24]
- A. W. Cross, D. P. DiVincenzo, and B. M. Terhal, “A comparative code study for quantum fault-tolerance”, (2009) arXiv:0711.1556
- [25]
- E. Knill, R. Laflamme, R. Martinez, and C. Negrevergne, “Benchmarking Quantum Computers: The Five-Qubit Error Correcting Code”, Physical Review Letters 86, 5811 (2001) arXiv:quant-ph/0101034 DOI
- [26]
- J. Zhang, R. Laflamme, and D. Suter, “Experimental Implementation of Encoded Logical Qubit Operations in a Perfect Quantum Error Correcting Code”, Physical Review Letters 109, (2012) arXiv:1208.4797 DOI
- [27]
- A. M. Souza, J. Zhang, C. A. Ryan, and R. Laflamme, “Experimental magic state distillation for fault-tolerant quantum computing”, Nature Communications 2, (2011) arXiv:1103.2178 DOI
- [28]
- M. Gong et al., “Experimental exploration of five-qubit quantum error-correcting code with superconducting qubits”, National Science Review 9, (2021) arXiv:1907.04507 DOI
- [29]
- C. Ryan-Anderson et al., “Implementing Fault-tolerant Entangling Gates on the Five-qubit Code and the Color Code”, (2022) arXiv:2208.01863
- [30]
- N. C. Brown et al., “Advances in compilation for quantum hardware -- A demonstration of magic state distillation and repeat-until-success protocols”, (2023) arXiv:2310.12106
- [31]
- M. H. Abobeih, Y. Wang, J. Randall, S. J. H. Loenen, C. E. Bradley, M. Markham, D. J. Twitchen, B. M. Terhal, and T. H. Taminiau, “Fault-tolerant operation of a logical qubit in a diamond quantum processor”, Nature 606, 884 (2022) arXiv:2108.01646 DOI
- [32]
- Aleksander Kubica, private communication, 2019
- [33]
- D. Lee and B. Yoshida, “Randomly Monitored Quantum Codes”, (2024) arXiv:2402.00145
- [34]
- B. Rahn, A. C. Doherty, and H. Mabuchi, “Exact and Approximate Performance of Concatenated Quantum Codes”, (2001) arXiv:quant-ph/0111003
- [35]
- B. Rahn, A. C. Doherty, and H. Mabuchi, “Exact performance of concatenated quantum codes”, Physical Review A 66, (2002) arXiv:quant-ph/0206061 DOI
- [36]
- Griffiths, Robert B. "Graph states and graph codes."
- [37]
- Y. Hwang and J. Heo, “On the relation between a graph code and a graph state”, (2015) arXiv:1511.05647
- [38]
- A. Cross, G. Smith, J. A. Smolin, and B. Zeng, “Codeword Stabilized Quantum Codes”, IEEE Transactions on Information Theory 55, 433 (2009) arXiv:0708.1021 DOI
- [39]
- Cross, Andrew William. Fault-tolerant quantum computer architectures using hierarchies of quantum error-correcting codes. Diss. Massachusetts Institute of Technology, 2008.
- [40]
- A. A. Kovalev, I. Dumer, and L. P. Pryadko, “Design of additive quantum codes via the code-word-stabilized framework”, Physical Review A 84, (2011) arXiv:1108.5490 DOI
- [41]
- A. J. Scott, “Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions”, Physical Review A 69, (2004) arXiv:quant-ph/0310137 DOI
- [42]
- G. D. Forney, M. Grassl, and S. Guha, “Convolutional and Tail-Biting Quantum Error-Correcting Codes”, IEEE Transactions on Information Theory 53, 865 (2007) arXiv:quant-ph/0511016 DOI
- [43]
- F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, “Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence”, Journal of High Energy Physics 2015, (2015) arXiv:1503.06237 DOI
- [44]
- D. Schlingemann and R. F. Werner, “Quantum error-correcting codes associated with graphs”, Physical Review A 65, (2001) arXiv:quant-ph/0012111 DOI
- [45]
- M. Lin and K. Noh, “Exploring the quantum capacity of a Gaussian random displacement channel using Gottesman-Kitaev-Preskill codes and maximum likelihood decoding”, (2024) arXiv:2411.04277
- [46]
- D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-Free Subspaces for Quantum Computation”, Physical Review Letters 81, 2594 (1998) arXiv:quant-ph/9807004 DOI
- [47]
- D. Bacon, D. A. Lidar, and K. B. Whaley, “Robustness of decoherence-free subspaces for quantum computation”, Physical Review A 60, 1944 (1999) arXiv:quant-ph/9902041 DOI
- [48]
- D. A. Lidar, D. Bacon, J. Kempe, and K. B. Whaley, “Decoherence-free subspaces for multiple-qubit errors. I. Characterization”, Physical Review A 63, (2001) arXiv:quant-ph/9908064 DOI
- [49]
- D. A. Lidar, D. Bacon, J. Kempe, and K. B. Whaley, “Decoherence-free subspaces for multiple-qubit errors. II. Universal, fault-tolerant quantum computation”, Physical Review A 63, (2001) arXiv:quant-ph/0007013 DOI
- [50]
- D. A. Lidar, D. Bacon, and K. B. Whaley, “Concatenating Decoherence-Free Subspaces with Quantum Error Correcting Codes”, Physical Review Letters 82, 4556 (1999) arXiv:quant-ph/9809081 DOI
- [51]
- D. A. Lidar, D. Bacon, J. Kempe, and K. Birgitta Whaley, “Protecting quantum information encoded in decoherence-free states against exchange errors”, Physical Review A 61, (2000) arXiv:quant-ph/9907096 DOI
- [52]
- T. Brun, I. Devetak, and M.-H. Hsieh, “Correcting Quantum Errors with Entanglement”, Science 314, 436 (2006) arXiv:quant-ph/0610092 DOI
- [53]
- J. Fan, J. Li, Y. Zhou, M.-H. Hsieh, and H. V. Poor, “Entanglement-assisted concatenated quantum codes”, Proceedings of the National Academy of Sciences 119, (2022) arXiv:2202.08084 DOI
- [54]
- D. Alsina and M. Razavi, “Absolutely maximally entangled states, quantum-maximum-distance-separable codes, and quantum repeaters”, Physical Review A 103, (2021) arXiv:1907.11253 DOI
- [55]
- A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, “Quantum Error Correction via Codes over GF(4)”, (1997) arXiv:quant-ph/9608006
- [56]
- B. Shaw, M. M. Wilde, O. Oreshkov, I. Kremsky, and D. A. Lidar, “Encoding one logical qubit into six physical qubits”, Physical Review A 78, (2008) arXiv:0803.1495 DOI
- [57]
- J. Hu, Q. Liang, and R. Calderbank, “Divisible Codes for Quantum Computation”, (2022) arXiv:2204.13176
- [58]
- A. A. Kovalev and L. P. Pryadko, “Quantum Kronecker sum-product low-density parity-check codes with finite rate”, Physical Review A 88, (2013) arXiv:1212.6703 DOI
- [59]
- R. Sarkar and T. J. Yoder, “A graph-based formalism for surface codes and twists”, Quantum 8, 1416 (2024) arXiv:2101.09349 DOI
- [60]
- Ilya. A. Simakov and Ilya. S. Besedin, “Low-overhead quantum error correction codes with a cyclic topology”, (2024) arXiv:2211.03094
- [61]
- S. Dutta and P. P. Kurur, “Quantum Cyclic Code of length dividing \(p^{t}+1\)”, (2011) arXiv:1011.5814
- [62]
- A. Denys and A. Leverrier, “Quantum error-correcting codes with a covariant encoding”, (2024) arXiv:2306.11621
Page edit log
- Remmy Zen (2024-07-15) — most recent
- Victor V. Albert (2022-08-10)
- Aleksander Kubica (2022-03-14)
- Victor V. Albert (2022-03-14)
- Marianna Podzorova (2021-12-13)
- Qingfeng (Kee) Wang (2021-12-07)
Cite as:
“Five-qubit perfect code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/stab_5_1_3