\([[5,1,3]]_q\) Galois-qudit code[1] 

Description

True stabilizer code that generalizes the five-qubit perfect code to Galois qudits of prime-power dimension \(q=p^m\). It has \(4(m-1)\) stabilizer generators expressed as \(X^{\gamma} Z^{\gamma} Z^{-\gamma} X^{-\gamma} I\) and its cyclic permutations, with \(\gamma\) iterating over basis elements of \(GF(q)\) over \(GF(p)\).

Notes

This code is described in a talk by Gottesman.

Parents

Child

  • Five-qubit perfect code — The \([[5,1,3]]_q\) Galois-qudit code for \(q=2\) reduces to the five-qubit perfect code.

References

[1]
D. Gottesman. Surviving as a quantum computer in a classical world
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)

edit on this site

Zoo Code ID: galois_5_1_3

Cite as:
\([[5,1,3]]_q\) Galois-qudit code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/galois_5_1_3
BibTeX:
@incollection{eczoo_galois_5_1_3,
  title={\([[5,1,3]]_q\) Galois-qudit code},
  booktitle={The Error Correction Zoo},
  year={2022},
  editor={Albert, Victor V. and Faist, Philippe},
  url={https://errorcorrectionzoo.org/c/galois_5_1_3}
}
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/galois_5_1_3

Cite as:

\([[5,1,3]]_q\) Galois-qudit code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/galois_5_1_3

Github: https://github.com/errorcorrectionzoo/eczoo_data/tree/main/codes/quantum/qudits_galois/small/galois_5_1_3.yml.