Cyclic quantum code[1]
Description
A block quantum code such that cyclic permutations of the subsystems leave the codespace invariant. In other words, the automorphism group of the code contains the cyclic group \(\mathbb{Z}_n\).
An example \([[17,9,4]]\) cyclic Hermitian qubit code is spanned by cyclic shifts of the Pauli operators \(XXYIXYZZYXIYXXIII\) and \(ZZXIZXYYXZIXZZIII\). An example \([[17,1,7]]\) Hermitian qubit code is spanned by cyclic shifts of the Pauli operators \(XYYIZZIYYXIIIIIII\) and \(ZXXIYYIXXZIIIIIII\).
Protection
Cyclic symmetry guarantees that if a single subsystem is protected against some noise, then all other subsystems are also.Encoding
Linear feedback shift registers [2].Decoding
Linear feedback shift registers [2].Adapted from the Berlekamp decoding algorithm for classical BCH codes [1].Notes
Many examples have been found by computer algebra programs. Ref. [1] give examples of \([[17,1,7]]\) and \([[17,9,3]]\) quantum cyclic codes.Cousins
- Cyclic code
- \([[7,1,3]]\) Steane code— The Steane code is equivalent to a cyclic code via qubit permutations [3; Exam. 1].
Member of code lists
Primary Hierarchy
Parents
Cyclic quantum code
Children
The cyclic group of these codes is a subgroup of the \(S_n\) symmetric group used in permutation invariant codes.
References
- [1]
- S. Dutta and P. P. Kurur, “Quantum Cyclic Code”, (2010) arXiv:1007.1697
- [2]
- M. Grassl and T. Beth, “Cyclic quantum error–correcting codes and quantum shift registers”, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 456, 2689 (2000) arXiv:quant-ph/9910061 DOI
- [3]
- A. A. Kovalev, I. Dumer, and L. P. Pryadko, “Design of additive quantum codes via the code-word-stabilized framework”, Physical Review A 84, (2011) arXiv:1108.5490 DOI
Page edit log
- Simon Burton (2024-08-12) — most recent
- Victor V. Albert (2024-08-12)
- Victor V. Albert (2021-12-16)
- Nolan Coble (2021-12-15)
Cite as:
“Cyclic quantum code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/quantum_cyclic