Five-rotor code[1]
Description
Extension of the five-qubit stabilizer code to the integer alphabet, i.e., the angular momentum states of a planar rotor. The code is \(U(1)\)-covariant and ideal codewords are not normalizable.
Protection
Normalized codewords approximately protect against erasure while maintaining covariance [1].
Parents
- Rotor stabilizer code
- Covariant block quantum code — The five-rotor code is \(U(1)\)-covariant.
- Cyclic quantum code
- Small-distance block quantum code
Cousin
- \([[5,1,3]]_{\mathbb{Z}_q}\) modular-qudit code — The five-rotor code is a rotor analogue of the five-qudit code.
References
- [1]
- P. Faist, S. Nezami, V. V. Albert, G. Salton, F. Pastawski, P. Hayden, and J. Preskill, “Continuous Symmetries and Approximate Quantum Error Correction”, Physical Review X 10, (2020) arXiv:1902.07714 DOI
Page edit log
- Victor V. Albert (2022-07-27) — most recent
Cite as:
“Five-rotor code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/rotor_5_1_3