[Jump to code hierarchy]

Rotor stabilizer code[1]

Description

Rotor code whose codespace is defined as the common \(+1\) eigenspace of a group of mutually commuting rotor generalized Pauli operators. The stabilizer group can be either discrete or continuous, corresponding to modular or linear constraints on angular positions and momenta. Both cases can yield finite or infinite logical dimension. Exact codewords are non-normalizable, so approximate constructions have to be considered.

Cousin

Primary Hierarchy

Parents
Rotor stabilizer code
Children
Homological rotor codes are rotor CSS codes constructed from chain complexes over the integers in an extension of the qubit CSS-to-homology correspondence to rotors.

References

[1]
J. Bermejo-Vega, C. Y.-Y. Lin, and M. V. den Nest, “Normalizer circuits and a Gottesman-Knill theorem for infinite-dimensional systems”, (2015) arXiv:1409.3208
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: rotor_stabilizer

Cite as:
“Rotor stabilizer code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/rotor_stabilizer
BibTeX:
@incollection{eczoo_rotor_stabilizer, title={Rotor stabilizer code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/rotor_stabilizer} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/rotor_stabilizer

Cite as:

“Rotor stabilizer code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/rotor_stabilizer

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/groups/rotors/stabilizer/rotor_stabilizer.yml.