Rotor code

Description

Encodes a logical Hilbert space, finite- or infinite-dimensional, into a physical Hilbert space of \(\ell^2\)-normalizable functions on either the integers \(\mathbb Z\) or the circle group \(U(1)\).

Parent

Children

Cousin

  • Square-lattice GKP code — Because square-lattice GKP error states are parameterized by two modular (i.e., periodic) variables of position and momentum, measuring one of the GKP stabilizers constrains the oscillator Hilbert space into that of a rotor.
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)

edit on this site

Zoo Code ID: rotor

Cite as:
“Rotor code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/rotor
BibTeX:
@incollection{eczoo_rotor, title={Rotor code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/rotor} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/rotor

Cite as:

“Rotor code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/rotor

Github: https://github.com/errorcorrectionzoo/eczoo_data/tree/main/codes/quantum/groups/rotor.yml.