Rotor code
Description
Encodes a logical Hilbert space, finite- or infinite-dimensional, into a physical Hilbert space of \(\ell^2\)-normalizable functions on either the integers \(\mathbb Z\) or the circle group \(U(1)\).
Parent
Children
Cousin
- Square-lattice GKP code — Because square-lattice GKP error states are parameterized by two modular (i.e., periodic) variables of position and momentum, measuring one of the GKP stabilizers constrains the oscillator Hilbert space into that of a rotor.
Page edit log
- Victor V. Albert (2022-07-27) — most recent
Cite as:
“Rotor code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/rotor
Github: https://github.com/errorcorrectionzoo/eczoo_data/tree/main/codes/quantum/groups/rotor.yml.