Square-lattice GKP code[1]
Description
Single-mode GKP qudit-into-oscillator code based on the rectangular lattice. Its stabilizer generators are oscillator displacement operators \(\hat{S}_q(2\alpha)=e^{-2i\alpha \hat{p}}\) and \(\hat{S}_p(2\beta)=e^{2i\beta \hat{x}}\). To ensure \(\hat{S}_q(2\alpha)\) and \(\hat{S}_p(2\beta)\) generate a stabilizer group that is Abelian, there is a constraint that \(\alpha\beta=2q\pi\) where \(q\) is an integer denoting the logical dimension.
Codewords can be expressed as equal weight superpositions of coherent states on a rectangular lattice in phase space with spatial period \(2\sqrt{\pi}\). The exact GKP state is non-normalizable, so approximate constructs have to be considered.
The \(q=1\) trivial encoding is spanned by the canonical GKP state or grid state, \begin{align} |GKP\rangle=\sum_{n\in\mathbb{Z}}|x=n\sqrt{2\pi}\rangle~, \tag*{(1)}\end{align} where \(|x\rangle\) are single-mode position states.
Protection
Encoding
Gates
Decoding
Fault Tolerance
Realizations
Notes
Parents
Cousins
- Approximate quantum error-correcting code (AQECC) — Square-lattice GKP codes approximately protect against photon loss [2,3,24].
- Rotor code — Because square-lattice GKP error states are parameterized by two modular (i.e., periodic) variables of position and momentum, measuring one of the GKP stabilizers constrains the oscillator Hilbert space into that of a rotor.
- \(\mathbb{Z}^n\) hypercubic lattice code — GKP codewords, when written in terms of coherent states, form a square lattice in phase space.
- Kitaev current-mirror qubit code — Current-mirror code phase gates utilize ancillary osillators in square-lattice GKP states [25,26].
- Zero-pi qubit code — Zero-pi code phase gates utilize ancillary osillators in square-lattice GKP states [25,26].
- Rotor GKP code — GKP (rotor GKP) codes protect against shifts in linear (angular) degrees of freedom.
- Number-phase code — Square-lattice GKP codes utilize translational symmetry in phase space, while number-phase codes utilize rotational symmetry. The two are related via a mapping [27].
- Spin GKP code — Spin-GKP code constructions utilize the Holstein-Primakoff mapping [28] (see also [29]) to convert various expressions for square-lattice GKP states into codes for spin systems.
References
- [1]
- D. Gottesman, A. Kitaev, and J. Preskill, “Encoding a qubit in an oscillator”, Physical Review A 64, (2001) arXiv:quant-ph/0008040 DOI
- [2]
- B. M. Terhal and D. Weigand, “Encoding a qubit into a cavity mode in circuit QED using phase estimation”, Physical Review A 93, (2016) arXiv:1506.05033 DOI
- [3]
- V. V. Albert et al., “Performance and structure of single-mode bosonic codes”, Physical Review A 97, (2018) arXiv:1708.05010 DOI
- [4]
- A. L. Grimsmo and S. Puri, “Quantum Error Correction with the Gottesman-Kitaev-Preskill Code”, PRX Quantum 2, (2021) arXiv:2106.12989 DOI
- [5]
- D. J. Weigand and B. M. Terhal, “Generating grid states from Schrödinger-cat states without postselection”, Physical Review A 97, (2018) arXiv:1709.08580 DOI
- [6]
- P. Campagne-Ibarcq et al., “Quantum error correction of a qubit encoded in grid states of an oscillator”, Nature 584, 368 (2020) DOI
- [7]
- I. Tzitrin et al., “Progress towards practical qubit computation using approximate Gottesman-Kitaev-Preskill codes”, Physical Review A 101, (2020) arXiv:1910.03673 DOI
- [8]
- N. C. Menicucci, “Fault-Tolerant Measurement-Based Quantum Computing with Continuous-Variable Cluster States”, Physical Review Letters 112, (2014) arXiv:1310.7596 DOI
- [9]
- B. Royer, S. Singh, and S. M. Girvin, “Stabilization of Finite-Energy Gottesman-Kitaev-Preskill States”, Physical Review Letters 125, (2020) arXiv:2009.07941 DOI
- [10]
- B. de Neeve et al., “Error correction of a logical grid state qubit by dissipative pumping”, (2020) arXiv:2010.09681
- [11]
- M. Rymarz et al., “Hardware-Encoding Grid States in a Nonreciprocal Superconducting Circuit”, Physical Review X 11, (2021) arXiv:2002.07718 DOI
- [12]
- X. C. Kolesnikow et al., “Gottesman-Kitaev-Preskill state preparation using periodic driving”, (2023) arXiv:2303.03541
- [13]
- D. Su, C. R. Myers, and K. K. Sabapathy, “Conversion of Gaussian states to non-Gaussian states using photon-number-resolving detectors”, Physical Review A 100, (2019) arXiv:1902.02323 DOI
- [14]
- B. Q. Baragiola et al., “All-Gaussian Universality and Fault Tolerance with the Gottesman-Kitaev-Preskill Code”, Physical Review Letters 123, (2019) arXiv:1903.00012 DOI
- [15]
- V. V. Sivak et al., “Real-time quantum error correction beyond break-even”, Nature 616, 50 (2023) arXiv:2211.09116 DOI
- [16]
- S. Glancy and E. Knill, “Error analysis for encoding a qubit in an oscillator”, Physical Review A 73, (2006) arXiv:quant-ph/0510107 DOI
- [17]
- C. Flühmann et al., “Encoding a qubit in a trapped-ion mechanical oscillator”, Nature 566, 513 (2019) arXiv:1807.01033 DOI
- [18]
- C. Flühmann and J. P. Home, “Direct Characteristic-Function Tomography of Quantum States of the Trapped-Ion Motional Oscillator”, Physical Review Letters 125, (2020) arXiv:1907.06478 DOI
- [19]
- P. Campagne-Ibarcq et al., “Quantum error correction of a qubit encoded in grid states of an oscillator”, Nature 584, 368 (2020) arXiv:1907.12487 DOI
- [20]
- Z. Ni et al., “Beating the break-even point with a discrete-variable-encoded logical qubit”, Nature 616, 56 (2023) arXiv:2211.09319 DOI
- [21]
- N. Fabre et al., “Generation of a time-frequency grid state with integrated biphoton frequency combs”, Physical Review A 102, (2020) arXiv:1904.01351 DOI
- [22]
- H. G. Feichtinger and T. Strohmer, editors , Gabor Analysis and Algorithms (Birkhäuser Boston, 1998) DOI
- [23]
- B. M. Terhal, J. Conrad, and C. Vuillot, “Towards scalable bosonic quantum error correction”, Quantum Science and Technology 5, 043001 (2020) arXiv:2002.11008 DOI
- [24]
- K. Noh, V. V. Albert, and L. Jiang, “Quantum Capacity Bounds of Gaussian Thermal Loss Channels and Achievable Rates With Gottesman-Kitaev-Preskill Codes”, IEEE Transactions on Information Theory 65, 2563 (2019) arXiv:1801.07271 DOI
- [25]
- A. Kitaev, “Protected qubit based on a superconducting current mirror”, (2006) arXiv:cond-mat/0609441
- [26]
- P. Brooks, A. Kitaev, and J. Preskill, “Protected gates for superconducting qubits”, Physical Review A 87, (2013) arXiv:1302.4122 DOI
- [27]
- A. D. C. Tosta, T. O. Maciel, and L. Aolita, “Grand Unification of continuous-variable codes”, (2022) arXiv:2206.01751
- [28]
- T. Holstein and H. Primakoff, “Field Dependence of the Intrinsic Domain Magnetization of a Ferromagnet”, Physical Review 58, 1098 (1940) DOI
- [29]
- C. D. Cushen and R. L. Hudson, “A quantum-mechanical central limit theorem”, Journal of Applied Probability 8, 454 (1971) DOI
Page edit log
- Victor V. Albert (2022-08-02) — most recent
- Victor V. Albert (2022-03-22)
- Victor V. Albert (2021-12-15)
- Yijia Xu (2021-12-14)
Cite as:
“Square-lattice GKP code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/gkp