# Square-lattice GKP code[1]

## Description

Single-mode GKP qudit-into-oscillator code based on the rectangular lattice. Its stabilizer generators are oscillator displacement operators \(\hat{S}_q(2\alpha)=e^{-2i\alpha \hat{p}}\) and \(\hat{S}_p(2\beta)=e^{2i\beta \hat{x}}\). To ensure \(\hat{S}_q(2\alpha)\) and \(\hat{S}_p(2\beta)\) generate a stabilizer group that is Abelian, there is a constraint that \(\alpha\beta=2q\pi\) where \(q\) is an integer denoting the logical dimension.

Codewords can be expressed as equal weight superpositions of coherent states on a rectangular lattice in phase space with spatial period \(2\sqrt{\pi}\). The exact GKP state is non-normalizable, so approximate constructs have to be considered.

The \(q=1\) trivial encoding is spanned by the canonical GKP state or grid state, \begin{align} |GKP\rangle=\sum_{n\in\mathbb{Z}}|x=n\sqrt{2\pi}\rangle~, \tag*{(1)}\end{align} where \(|x\rangle\) are single-mode position states.

## Protection

## Encoding

## Gates

## Decoding

## Fault Tolerance

## Realizations

## Notes

## Parents

## Cousins

- Approximate quantum error-correcting code (AQECC) — Square-lattice GKP codes approximately protect against photon loss [2,3,40].
- Rotor code — Because square-lattice GKP error states are parameterized by two modular (i.e., periodic) variables of position and momentum, measuring one of the GKP stabilizers constrains the oscillator Hilbert space into that of a rotor.
- \(\mathbb{Z}^n\) hypercubic lattice code — GKP codewords, when written in terms of coherent states, form a square lattice in phase space.
- Kitaev current-mirror qubit code — Current-mirror code phase gates utilize ancillary osillators in square-lattice GKP states [41,42].
- Zero-pi qubit code — Zero-pi code phase gates utilize ancillary osillators in square-lattice GKP states [41,42].
- Rotor GKP code — GKP (rotor GKP) codes protect against shifts in linear (angular) degrees of freedom.
- Number-phase code — Square-lattice GKP codes utilize translational symmetry in phase space, while number-phase codes utilize rotational symmetry. The two are related via a mapping [43].
- Asymmetric quantum code — GKP code parameters against position and momentum displacements can be tuned by the choice of lattice (e.g., square vs rectangular).
- Modular-qudit GKP code — The square-lattice GKP code can be obtained from the modular-qudit code by taking the physical qudit dimension to be infinite [1; Sec. II].
- Spin GKP code — Spin-GKP code constructions utilize the Holstein-Primakoff mapping [44] (see also [45]) to convert various expressions for square-lattice GKP states into codes for spin systems.

## References

- [1]
- D. Gottesman, A. Kitaev, and J. Preskill, “Encoding a qubit in an oscillator”, Physical Review A 64, (2001) arXiv:quant-ph/0008040 DOI
- [2]
- B. M. Terhal and D. Weigand, “Encoding a qubit into a cavity mode in circuit QED using phase estimation”, Physical Review A 93, (2016) arXiv:1506.05033 DOI
- [3]
- V. V. Albert et al., “Performance and structure of single-mode bosonic codes”, Physical Review A 97, (2018) arXiv:1708.05010 DOI
- [4]
- A. L. Grimsmo and S. Puri, “Quantum Error Correction with the Gottesman-Kitaev-Preskill Code”, PRX Quantum 2, (2021) arXiv:2106.12989 DOI
- [5]
- D. J. Weigand and B. M. Terhal, “Generating grid states from Schrödinger-cat states without postselection”, Physical Review A 97, (2018) arXiv:1709.08580 DOI
- [6]
- P. Campagne-Ibarcq et al., “Quantum error correction of a qubit encoded in grid states of an oscillator”, Nature 584, 368 (2020) DOI
- [7]
- I. Tzitrin et al., “Progress towards practical qubit computation using approximate Gottesman-Kitaev-Preskill codes”, Physical Review A 101, (2020) arXiv:1910.03673 DOI
- [8]
- N. C. Menicucci, “Fault-Tolerant Measurement-Based Quantum Computing with Continuous-Variable Cluster States”, Physical Review Letters 112, (2014) arXiv:1310.7596 DOI
- [9]
- B. Royer, S. Singh, and S. M. Girvin, “Stabilization of Finite-Energy Gottesman-Kitaev-Preskill States”, Physical Review Letters 125, (2020) arXiv:2009.07941 DOI
- [10]
- B. de Neeve et al., “Error correction of a logical grid state qubit by dissipative pumping”, (2020) arXiv:2010.09681
- [11]
- M. Rymarz et al., “Hardware-Encoding Grid States in a Nonreciprocal Superconducting Circuit”, Physical Review X 11, (2021) arXiv:2002.07718 DOI
- [12]
- X. C. Kolesnikow et al., “Gottesman-Kitaev-Preskill State Preparation Using Periodic Driving”, Physical Review Letters 132, (2024) arXiv:2303.03541 DOI
- [13]
- D. Su, C. R. Myers, and K. K. Sabapathy, “Conversion of Gaussian states to non-Gaussian states using photon-number-resolving detectors”, Physical Review A 100, (2019) arXiv:1902.02323 DOI
- [14]
- B. Q. Baragiola et al., “All-Gaussian Universality and Fault Tolerance with the Gottesman-Kitaev-Preskill Code”, Physical Review Letters 123, (2019) arXiv:1903.00012 DOI
- [15]
- B. W. Walshe et al., “Continuous-variable gate teleportation and bosonic-code error correction”, Physical Review A 102, (2020) arXiv:2008.12791 DOI
- [16]
- C. M. Dawson, H. L. Haselgrove, and M. A. Nielsen, “Noise thresholds for optical cluster-state quantum computation”, Physical Review A 73, (2006) arXiv:quant-ph/0601066 DOI
- [17]
- E. Knill, “Quantum computing with realistically noisy devices”, Nature 434, 39 (2005) arXiv:quant-ph/0410199 DOI
- [18]
- E. Knill, “Scalable Quantum Computation in the Presence of Large Detected-Error Rates”, (2004) arXiv:quant-ph/0312190
- [19]
- V. V. Sivak et al., “Real-time quantum error correction beyond break-even”, Nature 616, 50 (2023) arXiv:2211.09116 DOI
- [20]
- M. Puviani et al., “Boosting the Gottesman-Kitaev-Preskill quantum error correction with non-Markovian feedback”, (2023) arXiv:2312.07391
- [21]
- S. Glancy and E. Knill, “Error analysis for encoding a qubit in an oscillator”, Physical Review A 73, (2006) arXiv:quant-ph/0510107 DOI
- [22]
- C. Flühmann et al., “Encoding a qubit in a trapped-ion mechanical oscillator”, Nature 566, 513 (2019) arXiv:1807.01033 DOI
- [23]
- C. Flühmann and J. P. Home, “Direct Characteristic-Function Tomography of Quantum States of the Trapped-Ion Motional Oscillator”, Physical Review Letters 125, (2020) arXiv:1907.06478 DOI
- [24]
- V. G. Matsos et al., “Robust and Deterministic Preparation of Bosonic Logical States in a Trapped Ion”, Physical Review Letters 133, (2024) arXiv:2310.15546 DOI
- [25]
- V. G. Matsos et al., “Universal Quantum Gate Set for Gottesman-Kitaev-Preskill Logical Qubits”, (2024) arXiv:2409.05455
- [26]
- P. Campagne-Ibarcq et al., “Quantum error correction of a qubit encoded in grid states of an oscillator”, Nature 584, 368 (2020) arXiv:1907.12487 DOI
- [27]
- Z. Ni et al., “Beating the break-even point with a discrete-variable-encoded logical qubit”, Nature 616, 56 (2023) arXiv:2211.09319 DOI
- [28]
- M. Kudra et al., “Robust Preparation of Wigner-Negative States with Optimized SNAP-Displacement Sequences”, PRX Quantum 3, (2022) arXiv:2111.07965 DOI
- [29]
- D. Lachance-Quirion et al., “Autonomous quantum error correction of Gottesman-Kitaev-Preskill states”, (2023) arXiv:2310.11400
- [30]
- S. Konno et al., “Logical states for fault-tolerant quantum computation with propagating light”, Science 383, 289 (2024) arXiv:2309.02306 DOI
- [31]
- N. Fabre et al., “Generation of a time-frequency grid state with integrated biphoton frequency combs”, Physical Review A 102, (2020) arXiv:1904.01351 DOI
- [32]
- É. Descamps, A. Keller, and P. Milman, “Gottesman-Kitaev-Preskill encoding in continuous modal variables of single photons”, (2024) arXiv:2310.12618
- [33]
- Y. Aharonov, H. Pendleton, and A. Petersen, “Modular variables in quantum theory”, International Journal of Theoretical Physics 2, 213 (1969) DOI
- [34]
- Cartier, Pierre. "Quantum mechanical commutation relations and theta functions." Proc. Sympos. Pure Math. Vol. 9. 1966.
- [35]
- A. M. Perelomov, “Coherent states and theta functions”, Functional Analysis and Its Applications 6, 292 (1973) DOI
- [36]
- A. Perelomov, Generalized Coherent States and Their Applications (Springer Berlin Heidelberg, 1986) DOI
- [37]
- J. Zak, “Finite Translations in Solid-State Physics”, Physical Review Letters 19, 1385 (1967) DOI
- [38]
- H. G. Feichtinger and T. Strohmer, editors , Gabor Analysis and Algorithms (Birkhäuser Boston, 1998) DOI
- [39]
- G. B. Folland, “Harmonic Analysis in Phase Space. (AM-122)”, (1989) DOI
- [40]
- K. Noh, V. V. Albert, and L. Jiang, “Quantum Capacity Bounds of Gaussian Thermal Loss Channels and Achievable Rates With Gottesman-Kitaev-Preskill Codes”, IEEE Transactions on Information Theory 65, 2563 (2019) arXiv:1801.07271 DOI
- [41]
- A. Kitaev, “Protected qubit based on a superconducting current mirror”, (2006) arXiv:cond-mat/0609441
- [42]
- P. Brooks, A. Kitaev, and J. Preskill, “Protected gates for superconducting qubits”, Physical Review A 87, (2013) arXiv:1302.4122 DOI
- [43]
- A. D. C. Tosta, T. O. Maciel, and L. Aolita, “Grand Unification of continuous-variable codes”, (2022) arXiv:2206.01751
- [44]
- T. Holstein and H. Primakoff, “Field Dependence of the Intrinsic Domain Magnetization of a Ferromagnet”, Physical Review 58, 1098 (1940) DOI
- [45]
- C. D. Cushen and R. L. Hudson, “A quantum-mechanical central limit theorem”, Journal of Applied Probability 8, 454 (1971) DOI

## Page edit log

- Victor V. Albert (2022-08-02) — most recent
- Victor V. Albert (2022-03-22)
- Victor V. Albert (2021-12-15)
- Yijia Xu (2021-12-14)

## Cite as:

“Square-lattice GKP code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/gkp