Here is a list of bosonic stabilizer codes.

Code | Description |
---|---|

Analog stabilizer code | An oscillator-into-oscillator stabilizer code encoding \(k\) logical modes into \(n\) physical modes. An \(((n,k,d))_{\mathbb{R}}\) analog stabilizer code is denoted as \([[n,k,d]]_{\mathbb{R}}\), where \(d\) is the code's distance. |

Analog surface code | An analog CSS version of the Kitaev surface code. |

Analog-cluster-state code | A code based on a continuous-variable (CV), or analog, cluster state. Such a state can be used to perform MBQC of logical modes, which substitutes the temporal dimension necessary for decoding a conventional code with a spatial dimension. The exact analog cluster state is non-normalizable, so approximate constructs have to be considered. |

Bosonic stabilizer code | Bosonic code whose codespace is defined as the common \(+1\) eigenspace of a group of mutually commuting displacement operators. Displacements form the stabilizers of the code, and have continuous eigenvalues, in contrast with the discrete set of eigenvalues of qubit stabilizers. As a result, exact codewords are non-normalizable, so approximate constructions have to be considered. |

Concatenated GKP code | A concatenated code whose outer code is a GKP code. In other words, a bosonic code that can be thought of as a concatenation of an arbitrary inner code and another bosonic outer code. Most examples encode physical qubits of an inner stabilizer code into the square-lattice GKP code. |

GKP CV-cluster-state code | Cluster-state code can consists of a generalized analog cluster state that is initialized in GKP (resource) states for some of its physical modes. Alternatively, it can be thought of as an oscillator-into-oscillator GKP code whose encoding consists of initializing \(k\) modes in momentum states (or, in the normalizable case, squeezed vacua), \(n-k\) modes in (normalizable) GKP states, and applying a Gaussian circuit consisting of two-body \(e^{i V_{jk} \hat{x}_j \hat{x}_k }\) for some angles \(V_{jk}\). Provides a way to perform fault-tolerant MBQC, with the required number \(n-k\) of GKP-encoded physical modes determined by the particular protocol [1–4]. |

GKP-surface code | A concatenated code whose outer code is a GKP code and whose inner code is a toric surface code [5], rotated surface code [3,6–9], or XZZX surface code [10]. |

Gottesman-Kitaev-Preskill (GKP) code | Quantum lattice code for a non-degenerate lattice, thereby admitting a finite-dimensional logical subspace. Codes on \(n\) modes can be constructed from lattices with \(2n\)-dimensional full-rank Gram matrices \(A\). |

Hexagonal GKP code | Single-mode GKP qudit-into-oscillator code based on the hexagonal lattice. Offers the best error correction against displacement noise in a single mode due to the optimal packing of the underlying lattice. |

Homological bosonic code | An \([[n,1]]_{\mathbb{R}}\) analog CSS code defined using homological structres associated with an \(n-1\) simplex. Relevant to the study of spacetime replication of quantum information [11]. |

NTRU-GKP code | Multi-mode GKP code whose underlying lattice is utilized in variations of the NTRU cryptosystem [12]. Randomized constructions yield constant-rate GKP code families whose largest decodable displacement length scales as \(O(\sqrt{n})\) with high probability. |

Oscillator-into-oscillator GKP code | Multimode GKP code with an infinite-dimensional logical space. Can be obtained by considering an \(n\)-mode GKP code with a finite-dimensional logical space, removing stabilizers such that the logical space becomes infinite dimensional, and applying a Gaussian circuit. |

Quantum lattice code | Bosonic stabilizer code on \(n\) bosonic modes whose stabilizer group is an infinite countable group of oscillator displacement operators which implement lattice translations in phase space. |

Square-lattice GKP code | Single-mode GKP qudit-into-oscillator code based on the rectangular lattice. Its stabilizer generators are oscillator displacement operators \(\hat{S}_q(2\alpha)=e^{-2i\alpha \hat{p}}\) and \(\hat{S}_p(2\beta)=e^{2i\beta \hat{x}}\). To ensure \(\hat{S}_q(2\alpha)\) and \(\hat{S}_p(2\beta)\) generate a stabilizer group that is Abelian, there is a constraint that \(\alpha\beta=2q\pi\) where \(q\) is an integer denoting the logical dimension. |

\(D_4\) hyper-diamond GKP code | Two-mode GKP qudit-into-oscillator code based on the \(D_4\) hyper-diamond lattice. |

\([[5,1,3]]_{\mathbb{R}}\) Braunstein five-mode code | An analog stabilizer version of the five-qubit perfect code, encoding one mode into five and correcting arbitrary errors on any one mode. |

\([[9,1,3]]_{\mathbb{R}}\) Lloyd-Slotine code | An analog stabilizer version of Shor's nine-qubit code, encoding one mode into nine and correcting arbitrary errors on any one mode. |

## References

- [1]
- N. C. Menicucci, “Fault-Tolerant Measurement-Based Quantum Computing with Continuous-Variable Cluster States”, Physical Review Letters 112, (2014) arXiv:1310.7596 DOI
- [2]
- J. E. Bourassa et al., “Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer”, Quantum 5, 392 (2021) arXiv:2010.02905 DOI
- [3]
- K. Fukui et al., “High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction”, Physical Review X 8, (2018) arXiv:1712.00294 DOI
- [4]
- I. Tzitrin et al., “Fault-Tolerant Quantum Computation with Static Linear Optics”, PRX Quantum 2, (2021) arXiv:2104.03241 DOI
- [5]
- C. Vuillot et al., “Quantum error correction with the toric Gottesman-Kitaev-Preskill code”, Physical Review A 99, (2019) arXiv:1810.00047 DOI
- [6]
- K. Noh and C. Chamberland, “Fault-tolerant bosonic quantum error correction with the surface–Gottesman-Kitaev-Preskill code”, Physical Review A 101, (2020) arXiv:1908.03579 DOI
- [7]
- M. V. Larsen et al., “Fault-Tolerant Continuous-Variable Measurement-based Quantum Computation Architecture”, PRX Quantum 2, (2021) arXiv:2101.03014 DOI
- [8]
- K. Noh, C. Chamberland, and F. G. S. L. Brandão, “Low-Overhead Fault-Tolerant Quantum Error Correction with the Surface-GKP Code”, PRX Quantum 3, (2022) arXiv:2103.06994 DOI
- [9]
- M. Lin, C. Chamberland, and K. Noh, “Closest Lattice Point Decoding for Multimode Gottesman-Kitaev-Preskill Codes”, PRX Quantum 4, (2023) arXiv:2303.04702 DOI
- [10]
- J. Zhang, Y.-C. Wu, and G.-P. Guo, “Concatenation of the Gottesman-Kitaev-Preskill code with the XZZX surface code”, Physical Review A 107, (2023) arXiv:2207.04383 DOI
- [11]
- P. Hayden and A. May, “Summoning information in spacetime, or where and when can a qubit be?”, Journal of Physics A: Mathematical and Theoretical 49, 175304 (2016) arXiv:1210.0913 DOI
- [12]
- J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based public key cryptosystem”, Lecture Notes in Computer Science 267 (1998) DOI