\([[5,1,3]]_{\mathbb{R}}\) Braunstein five-mode code[1]
Description
An analog stabilizer version of the five-qubit perfect code, encoding one mode into five and correcting arbitrary errors on any one mode.
Decoding
Error correction can be done using linear-optical elements and feedback [2].
Parents
Cousin
- \([[5,1,3]]_{\mathbb{Z}_q}\) modular-qudit code — The Braunstein five-mode code is a bosonic analogue of the five-qudit code.
References
- [1]
- S. L. Braunstein, “Error Correction for Continuous Quantum Variables”, Physical Review Letters 80, 4084 (1998) arXiv:quant-ph/9711049 DOI
- [2]
- S. L. Braunstein, “Quantum error correction for communication with linear optics”, Nature 394, 47 (1998) DOI
Page edit log
- Victor V. Albert (2022-06-22) — most recent
Cite as:
“\([[5,1,3]]_{\mathbb{R}}\) Braunstein five-mode code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/braunstein