Here is a list of codes related to block quantum codes that detect or correct an error on at most two subsystems.

Code | Description |
---|---|

Ball color code | A color code defined on a \(D\)-dimensional colex. This family includes hypercube color codes (color codes defined on balls constructed from hyperoctahedra) and 3D ball color codes (color codes defined on duals of certain Archimedean solids). |

Binary dihedral PI code | Multi-qubit code designed to realize gates from the binary dihedral group transversally. Can also be interpreted as a single-spin code. The codespace projection is a projection onto an irrep of the binary dihedral group \( \mathsf{BD}_{2N} = \langle\omega I, X, P\rangle \) of order \(8N\), where \( \omega \) is a \( 2N \)th root of unity, and \( P = \text{diag} ( 1, \omega^2) \). |

Five-qubit perfect code | Five-qubit cyclic stabilizer code that is the smallest qubit stabilizer code to correct a single-qubit error. |

Five-rotor code | Extension of the five-qubit stabilizer code to the integer alphabet, i.e., the angular momentum states of a planar rotor. The code is \(U(1)\)-covariant and ideal codewords are not normalizable. |

Four-qubit single-deletion code | Four-qubit PI code that is the smallest qubit code to correct one deletion error. |

Four-rotor code | \([[4,2,2]]_{\mathbb Z}\) CSS rotor code that is an extension of the four-qubit code to the integer alphabet, i.e., the angular momentum states of a planar rotor. |

Group-representation code | Code whose projection is onto an irreducible representation of a subgroup \(G\) of a group of canonical or distinguished unitary operations, e.g., transversal gates in the case of block quantum codes, Gaussian operations in the case of bosonic codes, or \(SU(2)\) operations in the case of single-spin codes. |

Hyperbolic color code | An extension of the color code construction to hyperbolic manifolds. As opposed to there being only three types of uniform three-valent and three-colorable lattice tilings in the 2D Euclidean plane, there is an infinite number of admissible hyperbolic tilings in the 2D hyperbolic plane [1]. Certain double covers of hyperbolic tilings also yield admissible tilings [2]. Other admissible hyperbolic tilings can be obtained via a fattening procedure [3]; see also a construction based on the more general quantum pin codes [4]. |

Kitaev chain code | An \([[n,1,1]]_{f}\) Majorana stabilizer code forming the ground-state of the Kitaev Majorana chain (a.k.a. Kitaev Majorana wire) in its fermionic topological phase, which is unitarily equivalent to the 1D quantum Ising model in the symmetry-breaking phase via the Jordan-Wigner transformation. The code is usually defined using the algebra of two anti-commuting Majorana operators called Majorana zero modes (MZMs) or Majorana edge modes (MEMs). |

Kitaev current-mirror qubit code | Member of the family of \([[2n,(0,2),(2,n)]]_{\mathbb{Z}}\) homological rotor codes storing a logical qubit on a thin Möbius strip. The ideal code can be obtained from a Josephson-junction [5] system [6]. |

Majorana box qubit | An \([[n,1,2]]_{f}\) Majorana stabilizer code forming the even-fermion-parity ground-state subspace of two parallel Kitaev Majorana chains in their fermionic topological phase. The \([[2,1,2]]_{f}\) version is called the tetron Majorana code. An \([[3,2,2]]_{f}\) extension using three Kitaev chains and housing two logical qubits of the same parity is called the hexon Majorana code. Similarly, octon, decon, and dodecon are codes defined by the positive-parity subspace of \(4\), \(5\), and \(6\) fermionic modes, respectively [7]. |

Perfect quantum code | A type of block quantum code whose parameters satisfy the quantum Hamming bound with equality. |

Quantum Golay code | A \([[23, 1, 7]]\) self-dual CSS code with eleven stabilizer generators of each type, and with each generator being weight eight. |

Quantum multi-dimensional parity-check (QMDPC) code | High-rate low-distance CSS code whose qubits lie on a \(D\)-dimensional rectangle, with \(X\)-type stabilizer generators defined on each \(D-1\)-dimensional rectangle. The \(Z\)-type stabilizer generators are defined via permutations in order to commute with the \(X\)-type generators. |

Rhombic dodecahedron surface code | A \([[14,3,3]]\) twist-defect surface code whose qubits lie on the vertices of a rhombic dodecahedron. Its non-CSS nature is due to twist defects [8] stemming from the geometry of the polytope. |

Small-distance block code | A block code of length \(n\) that either detects or corrects errors on at most two coordinates, i.e., has distance \(d \leq 5\). |

Small-distance block quantum code | A block quantum code on \(n\) subsystems that either detects or corrects errors on at most two subsystems, i.e., have distance \(\leq 5\). |

Smolin-Smith-Wehner (SSW) code | A family of \(((n=4k+2l+3,M_{k,l},2))\) self-complementary CWS codes, where \(M_{k,l} \approx 2^{n-2}(1-\sqrt{2/(\pi(n-1))})\). For \(n \geq 11\), these codes have a logical subspace whose dimension is larger than that of the largest stabilizer code for the same \(n\) and \(d\). A subset of these codes can be augmented to yield codes with one higher logical dimension [9]. |

Surface-17 code | A \([[9,1,3]]\) rotated surface code named for the sum of its 9 data qubits and 8 syndrome qubits. It uses the smallest number of qubits to perform fault-tolerant error correction on a surface code with parallel syndrome extraction. |

Three-qutrit code | A \([[3,1,2]]_3\) prime-qudit CSS code that is the smallest qutrit stabilizer code to detect a single-qutrit error. with stabilizer generators \(ZZZ\) and \(XXX\). The code defines a quantum secret-sharing scheme and serves as a minimal model for the AdS/CFT holographic duality. It is also the smallest non-trivial instance of a quantum maximum distance separable code (QMDS), saturating the quantum Singleton bound. |

Three-rotor code | \([[3,1,2]]_{\mathbb Z}\) rotor code that is an extension of the \([[3,1,2]]_3\) qutrit CSS code to the integer alphabet, i.e., the angular momentum states of a planar rotor. |

Transverse-field Ising model (TFIM) code | A 1D translationally invariant stabilizer code whose encoding is a constant-depth circuit of nearest-neighbor gates on alternating even and odd bonds that consist of transverse-field Ising Hamiltonian interactions. The code allows for perfect state transfer of arbitrary distance using local operations and classical communications (LOCC). |

Twisted \(1\)-group code | Block group-representation code realizing particular irreps of particular groups such that a distance of two is automatically guaranteed. Groups which admit irreps with this property are called twisted (unitary) \(1\)-groups and include the binary icosahedral group \(2I\), the \(\Sigma(360\phi)\) subgroup of \(SU(3)\), the family \(\{PSp(2b, 3), b \geq 1\}\), and the alternating groups \(A_{5,6}\). Groups whose irreps are images of the appropriate irreps of twisted \(1\)-groups also yield such properties, e.g., the binary tetrahedral group \(2T\) or qutrit Pauli group \(\Sigma(72\phi)\). |

Zero-pi qubit code | A \([[2,(0,2),(2,1)]]_{\mathbb{Z}}\) homological rotor code on the smallest tiling of the projective plane \(\mathbb{R}P^2\). The ideal code can be obtained from a four-rotor Josephson-junction [5] system after a choice of grounding [6]. |

\(((10,24,3))\) qubit code | Ten-qubit CWS code that is unique and optimal for its parameters. |

\(((3,6,2))_{\mathbb{Z}_6}\) Euler code | Six-qudit error-detecting code with logical dimension \(K=6\) that is obtained from a particular AME state that serves as a solution to the 36 officers of Euler problem. The code is obtained from a \(((4,1,3))_{\mathbb{Z}_6}\) code. |

\(((5+2r,3\times 2^{2r+1},2))\) Rains code | Member of a family of \(((5+2r,3\times 2^{2r+1},2))\) CWS codes; see also [11,12][10; Exam. 8]. |

\(((5,3,2))_3\) qutrit code | Smallest qutrit block code realizing the \(\Sigma(360\phi)\) subgroup of \(SU(3)\) transversally. The next smallest code is \(((7,3,2))_3\). |

\(((5,6,2))\) qubit code | Six-qubit cyclic CWS code detecting a single-qubit error. This code has a logical subspace whose dimension is larger than that of the \([[5,2,2]]\) code, the best five-qubit stabilizer code with the same distance [9]. |

\(((7,2,3))\) Pollatsek-Ruskai code | Seven-qubit PI code that realizes gates from the binary icosahedral group transversally. Can also be interpreted as a spin-\(7/2\) single-spin code. The codespace projection is a projection onto an irrep of the binary icosahedral group \(2I\). |

\(((9,12,3))\) qubit code | Nine-qubit cyclic CWS code correcting a single-qubit error. This code has a logical subspace whose dimension is larger than that of the \([[9,3,3]]\) code, the best nine-qubit stabilizer code with the same distance [13]. |

\(((9,2,3))\) Ruskai code | Nine-qubit PI code that protects against single-qubit errors as well as two-qubit errors arising from exchange processes. |

\(((n,1+n(q-1),2))_q\) union stabilizer code | Member of a family of \(((n,1+n(q-1),2))_q\) Galois-qudit union stabilizer code for odd \(n\). |

\(((n,1,2))\) Bravyi-Lee-Li-Yoshida PI code | PI distance-two code on \(n\geq4\) qubits whose degree of entanglement vanishes asymptotically with \(n\) [14; Appx. D] (cf. [15]). |

\([[10,1,2]]\) CSS code | Smallest stabilizer code to implement a logical \(T\) gate via application of physical \(T\), \(T^{\dagger}\), and \(CCZ\) gates. |

\([[10,1,4]]_{G}\) tenfold code | A \([[10,1,4]]_{G}\) group code for finite Abelian \(G\). The code is defined using a graph that is closely related to the \([[5,1,3]]\) code. |

\([[11,1,5]]\) quantum dodecacode | Eleven-qubit pure stabilizer code that is the smallest qubit stabilizer code to correct two-qubit errors. |

\([[11,1,5]]_3\) qutrit Golay code | An \([[11,1,5]]_3\) constructed from the ternary Golay code via the CSS construction. The code's stabilizer generator matrix blocks \(H_{X}\) and \(H_{Z}\) are both the generator matrix of the ternary Golay code. |

\([[12,2,4]]\) carbon code | Self-dual twelve-qubit CSS code. |

\([[13,1,5]]\) cyclic code | Thirteen-qubit twisted surface code for which there is a set of stabilizer generators consisting of cyclic permutations of the \(XZZX\)-type Pauli string \(XIZZIXIIIIIII\). The code can be thought of as a small twisted XZZX code [16; Ex. 11 and Fig. 3]. |

\([[15, 7, 3]]\) quantum Hamming code | Self-dual quantum Hamming code that admits permutation-based CZ logical gates. The code is constructed using the CSS construction from the \([15,11,3]\) Hamming code and its \([15,4,8]\) dual code. |

\([[15,1,3]]\) quantum Reed-Muller code | \([[15,1,3]]\) CSS code that is most easily thought of as a tetrahedral 3D color code. |

\([[16,6,4]]\) Tesseract color code | A 4D color code defined on a tesseract, with stabilizer generators of both types supported on each cube. |

\([[2^D,D,2]]\) hypercube quantum code | Member of a family of codes defined by placing qubits on a \(D\)-dimensional hypercube, \(Z\)-stabilizers on all two-dimensional faces, and an \(X\)-stabilizer on all vertices. These codes realize gates at the \((D-1)\)-st level of the Clifford hierarchy. It can be generalized to a \([[4^D,D,4]]\) error-correcting family [17]. Various other concatenations give families with increasing distance (see cousins). |

\([[2^r, 2^r-r-2, 3]]\) Gottesman code | A family of non-CSS stabilizer codes of distance \(3\) that saturate the asymptotic quantum Hamming bound. |

\([[2^r-1, 2^r-2r-1, 3]]\) quantum Hamming code | Member of a family of self-dual CCS codes constructed from \([2^r-1,2^r-r-1,3]=C_X=C_Z\) Hamming codes and their duals the simplex codes. The code's stabilizer generator matrix blocks \(H_{X}\) and \(H_{Z}\) are both the generator matrix for a simplex code. The weight of each stabilizer generator is \(2^{r-1}\). |

\([[2^r-1, 2^r-2r-1, 3]]_p\) quantum Hamming code | A family of CSS codes extending quantum Hamming codes to prime qudits of dimension \(p\) by expressing the qubit code stabilizers in local-dimension-invariant (LDI) form [18]. |

\([[2^r-1,1,3]]\) simplex code | Member of color-code code family constructed with a punctured first-order RM\((1,m=r)\) \([2^r-1,r+1,2^{r-1}-1]\) code and its even subcode for \(r \geq 3\). Each code transversally implements a diagonal gate at the \((r-1)\)st level of the Clifford hierarchy [19,20]. Each code is a color code defined on a simplex in \(r-1\) dimensions [21,22], where qubits are placed on the vertices, edges, and faces as well as on the simplex itself. |

\([[2m,2m-2,2]]\) error-detecting code | Self-complementary CSS code for \(m\geq 2\) with generators \(\{XX\cdots X, ZZ\cdots Z\} \) acting on all \(2m\) physical qubits. The code is constructed via the CSS construction from an SPC code and a repetition code [23; Sec. III]. This is the highest-rate distance-two code when an even number of qubits is used [13]. |

\([[30,8,3]]\) Bring code | A \([[30,8,3]]\) hyperbolic surface code on a quotient of the \(\{5,5\}\) hyperbolic tiling called Bring's curve. Its qubits and stabilizer generators lie on the vertices of the small stellated dodecahedron. Admits a set of weight-five stabilizer generators. |

\([[3k + 8, k, 2]]\) triorthogonal code | Member of the \([[3k + 8, k, 2]]\) family (for even \(k\)) of triorthogonal and quantum divisible codes that admit a transversal \(T\) gate and are relevant for magic-state distillation. |

\([[4,2,2]]\) Four-qubit code | Four-qubit CSS stabilizer code is the smallest qubit stabilizer code to detect a single-qubit error. |

\([[4,2,2]]_{G}\) four group-qudit code | \([[4,2,2]]_{G}\) group quantum code that is an extension of the four-qubit code to group-valued qudits. |

\([[49,1,5]]\) triorthogonal code | Triorthogonal and quantum divisible code which is the smallest distance-five stabilizer code to admit a transversal \(T\) gate [24–26]. Its \(X\)-type stabilizers form a triply even linear binary code in the symplectic representation. |

\([[5,1,2]]\) rotated surface code | Rotated surface code on one rung of a ladder, with one qubit on the rung, and four qubits surrounding it. |

\([[5,1,3]]_q\) Galois-qudit code | True stabilizer code that generalizes the five-qubit perfect code to Galois qudits of prime-power dimension \(q=p^m\). It has \(4(m-1)\) stabilizer generators expressed as \(X_{\gamma} Z_{\gamma} Z_{-\gamma} X_{-\gamma} I\) and its cyclic permutations, with \(\gamma\) iterating over basis elements of \(GF(q)\) over \(GF(p)\). |

\([[5,1,3]]_{\mathbb{R}}\) Braunstein five-mode code | An analog stabilizer version of the five-qubit perfect code, encoding one mode into five and correcting arbitrary errors on any one mode. |

\([[5,1,3]]_{\mathbb{Z}_q}\) modular-qudit code | Modular-qudit stabilizer code that generalizes the five-qubit perfect code using properties of the multiplicative group \(\mathbb{Z}_q\) [27]; see also [28; Thm. 13]. It has four stabilizer generators consisting of \(X Z Z^\dagger X^\dagger I\) and its cyclic permutations. |

\([[6,1,3]]\) Six-qubit stabilizer code | One of two six-qubit distance-three codes that are unique up to equivalence [13], with the other code a trivial extension of the five-qubit code [29]. Stabilizer generators and logical Pauli operators are presented in Ref. [29]. |

\([[6,2,2]]\) \(C_6\) code | Error-detecting self-dual CSS code used in concatenation schemes for fault-tolerant quantum computation. A set of stabilizer generators is \(IIXXXX\) and \(XXIIXX\), together with the same two \(Z\)-type generators. |

\([[6,2,3]]_{q}\) code | Six-qudit MDS error-detecting code defined for Galois-qudit dimension \(q=3\) [30], \(q=2^2\) [31], and \(q \geq 5\) [30,32]. This code cannot exist for qubits (\(q=2\)). |

\([[6,4,2]]\) error-detecting code | Error-detecting six-qubit code with rate \(2/3\) whose codewords are cat/GHZ states. A set of stabilizer generators is \(XXXXXX\) and \(ZZZZZZ\). It is the unique code for its parameters, up to equivalence [13; Tab. III]. Concatenations of this code with itself yield the \([[6^r,4^r,2^r]]\) level-\(r\) many-hypercube code [33]. |

\([[6k+2,3k,2]]\) Campbell-Howard code | Family of \([[6k+2,3k,2]]\) qubit stabilizer codes with quasi-transversal \(CZZ^{\otimes k}\) gates that are relevant to magic-state distillation. |

\([[7, 1:1, 3]]\) hybrid stabilizer code | A distance-three seven-qubit hybrid stabilizer code storing one qubit and one classical bit. Admits a stabilizer generator set with a weight-two generator, which delineates the underlying classical code [34; Eq. (3)]. |

\([[7,1,3]]\) Steane code | A \([[7,1,3]]\) self-dual CSS code that is the smallest qubit CSS code to correct a single-qubit error [29]. The code is constructed using the classical binary \([7,4,3]\) Hamming code for protecting against both \(X\) and \(Z\) errors. |

\([[7,1,3]]\) bare code | A \([[7,1,3]]\) code that admits fault-tolerant syndrome extraction using only one ancilla per stabilizer generator measurement. |

\([[7,1,3]]\) twist-defect surface code | A \([[7,1,3]]\) code (different from the Steane code) that is a small example of a twist-defect surface code. |

\([[7,3,3]]_{q}\) code | Seven-qudit MDS error-detecting code defined for Galois-qudit dimension \(q=3\) [30] and \(q \geq 7\) [30,32]. This code cannot exist for qubits (\(q=2\)). |

\([[8, 2:1, 3]]\) hybrid stabilizer code | A code obtained from the \([[8,3,3]]\) Gottesman code by using one of its logical qubits as a classical bit. One can also use two logical qubits as classical bits, obtaining an \([[8,1:2,3]]\) hybrid stabilizer code. |

\([[8, 3, 3]]\) Eight-qubit Gottesman code | Eight-qubit non-degenerate code that can be obtained from a modified CSS construction using the \([8,4,4]\) extended Hamming code and a \([8,7,2]\) even-weight code [35]. The modification introduces signs between the codewords. |

\([[8,2,2]]\) hyperbolic color code | An \([[8,2,2]]\) hyperbolic color code defined on the projective plane. |

\([[8,3,2]]\) CSS code | Smallest 3D color code whose physical qubits lie on vertices of a cube and which admits a (weakly) transversal CCZ gate. |

\([[9,1,3]]\) Shor code | Nine-qubit CSS code that is the first quantum error-correcting code. |

\([[9,1,3]]_{\mathbb{R}}\) Lloyd-Slotine code | An analog stabilizer version of Shor's nine-qubit code, encoding one mode into nine and correcting arbitrary errors on any one mode. |

\([[9,1,3]]_{\mathbb{Z}_q}\) modular-qudit code | Modular-qudit CSS code that generalizes the \([[9,1,3]]\) Shor code using properties of the multiplicative group \(\mathbb{Z}_q\). |

\([[9,1,5]]_3\) quantum Glynn code | Nine-qutrit pure Hermitian code that is the smallest qutrit stabilizer code to correct two-qutrit errors. |

\([[9m-k,k,2]]_3\) triorthogonal code | Member of the \([[9m-k,k,2]]_3\) family of triorthogonal qutrit codes (for \(k\leq 3m-2\)) that admit a transversal diagonal gate in the third level of the qudit Clifford hierarchy and that are relevant for magic-state distillation. |

\([[k+4,k,2]]\) H code | Family of \([[k+4,k,2]]\) self-dual CSS codes (for even \(k\)) with transversal Hadamard gates that are relevant to magic state distillation. The four stablizer generators are \(X_1X_2X_3X_4\), \(Z_1Z_2Z_3Z_4\), \(X_1X_2X_5X_6...X_{k+4}\), and \(Z_1Z_2Z_5Z_6...Z_{k+4}\).' |

## References

- [1]
- E. B. da Silva and W. S. Soares Jr, “Hyperbolic quantum color codes”, (2018) arXiv:1804.06382
- [2]
- N. Delfosse, “Tradeoffs for reliable quantum information storage in surface codes and color codes”, 2013 IEEE International Symposium on Information Theory (2013) arXiv:1301.6588 DOI
- [3]
- H. Bombin and M. A. Martin-Delgado, “Exact topological quantum order inD=3and beyond: Branyons and brane-net condensates”, Physical Review B 75, (2007) arXiv:cond-mat/0607736 DOI
- [4]
- C. Vuillot and N. P. Breuckmann, “Quantum Pin Codes”, IEEE Transactions on Information Theory 68, 5955 (2022) arXiv:1906.11394 DOI
- [5]
- S. M. Girvin, “Circuit QED: superconducting qubits coupled to microwave photons”, Quantum Machines: Measurement and Control of Engineered Quantum Systems 113 (2014) DOI
- [6]
- C. Vuillot, A. Ciani, and B. M. Terhal, “Homological Quantum Rotor Codes: Logical Qubits from Torsion”, (2023) arXiv:2303.13723
- [7]
- D. Litinski and F. von Oppen, “Quantum computing with Majorana fermion codes”, Physical Review B 97, (2018) arXiv:1801.08143 DOI
- [8]
- H. Bombin, “Topological Order with a Twist: Ising Anyons from an Abelian Model”, Physical Review Letters 105, (2010) arXiv:1004.1838 DOI
- [9]
- S. Yu, Q. Chen, and C. H. Oh, “Graphical Quantum Error-Correcting Codes”, (2007) arXiv:0709.1780
- [10]
- V. Aggarwal and A. R. Calderbank, “Boolean Functions, Projection Operators, and Quantum Error Correcting Codes”, IEEE Transactions on Information Theory 54, 1700 (2008) arXiv:cs/0610159 DOI
- [11]
- K. Feng and C. Xing, “A new construction of quantum error-correcting codes”, Transactions of the American Mathematical Society 360, 2007 (2007) DOI
- [12]
- A. Rigby, J. C. Olivier, and P. Jarvis, “Heuristic construction of codeword stabilized codes”, Physical Review A 100, (2019) arXiv:1907.04537 DOI
- [13]
- A. R. Calderbank et al., “Quantum Error Correction via Codes over GF(4)”, (1997) arXiv:quant-ph/9608006
- [14]
- S. Bravyi et al., “How much entanglement is needed for quantum error correction?”, (2024) arXiv:2405.01332
- [15]
- G. Gour and N. R. Wallach, “Entanglement of subspaces and error-correcting codes”, Physical Review A 76, (2007) arXiv:0704.0251 DOI
- [16]
- A. A. Kovalev, I. Dumer, and L. P. Pryadko, “Design of additive quantum codes via the code-word-stabilized framework”, Physical Review A 84, (2011) arXiv:1108.5490 DOI
- [17]
- D. Hangleiter et al., “Fault-tolerant compiling of classically hard IQP circuits on hypercubes”, (2024) arXiv:2404.19005
- [18]
- A. J. Moorthy and L. G. Gunderman, “Local-dimension-invariant Calderbank-Shor-Steane Codes with an Improved Distance Promise”, (2021) arXiv:2110.11510
- [19]
- B. Zeng et al., “Local unitary versus local Clifford equivalence of stabilizer and graph states”, Physical Review A 75, (2007) arXiv:quant-ph/0611214 DOI
- [20]
- S. X. Cui, D. Gottesman, and A. Krishna, “Diagonal gates in the Clifford hierarchy”, Physical Review A 95, (2017) arXiv:1608.06596 DOI
- [21]
- H. Bombin, “Gauge Color Codes: Optimal Transversal Gates and Gauge Fixing in Topological Stabilizer Codes”, (2015) arXiv:1311.0879
- [22]
- B. J. Brown, N. H. Nickerson, and D. E. Browne, “Fault-tolerant error correction with the gauge color code”, Nature Communications 7, (2016) arXiv:1503.08217 DOI
- [23]
- N. Rengaswamy et al., “Synthesis of Logical Clifford Operators via Symplectic Geometry”, 2018 IEEE International Symposium on Information Theory (ISIT) (2018) arXiv:1803.06987 DOI
- [24]
- K. Betsumiya and A. Munemasa, “On triply even binary codes”, Journal of the London Mathematical Society 86, 1 (2012) arXiv:1012.4134 DOI
- [25]
- S. Bravyi and J. Haah, “Magic-state distillation with low overhead”, Physical Review A 86, (2012) arXiv:1209.2426 DOI
- [26]
- K. Betsumiya and A. Munemasa, “On triply even binary codes”, Journal of the London Mathematical Society 86, 1 (2012) DOI
- [27]
- H. F. Chau, “Five quantum register error correction code for higher spin systems”, Physical Review A 56, R1 (1997) arXiv:quant-ph/9702033 DOI
- [28]
- E. M. Rains, “Nonbinary quantum codes”, (1997) arXiv:quant-ph/9703048
- [29]
- B. Shaw et al., “Encoding one logical qubit into six physical qubits”, Physical Review A 78, (2008) arXiv:0803.1495 DOI
- [30]
- Keqin Feng, “Quantum codes [[6, 2, 3]]/sub p/ and [[7, 3, 3]]/sub p/ (p ≥ 3) exist”, IEEE Transactions on Information Theory 48, 2384 (2002) DOI
- [31]
- Z. Wang et al., “Quantum error-correcting codes over mixed alphabets”, Physical Review A 88, (2013) arXiv:1205.4253 DOI
- [32]
- A. Ketkar et al., “Nonbinary stabilizer codes over finite fields”, (2005) arXiv:quant-ph/0508070
- [33]
- H. Goto, “High-performance fault-tolerant quantum computing with many-hypercube codes”, Science Advances 10, (2024) arXiv:2403.16054 DOI
- [34]
- A. Nemec and A. Klappenecker, “Infinite Families of Quantum-Classical Hybrid Codes”, (2020) arXiv:1911.12260
- [35]
- A. M. Steane, “Simple quantum error-correcting codes”, Physical Review A 54, 4741 (1996) arXiv:quant-ph/9605021 DOI