[Jump to code hierarchy]

\([[2^r-1, 2^r-2r-1, 3]]\) quantum Hamming code[1]

Description

Member of a family of self-dual CCS codes constructed from \([2^r-1,2^r-r-1,3]=C_X=C_Z\) Hamming codes and their duals the simplex codes. The code's stabilizer generator matrix blocks \(H_{X}\) and \(H_{Z}\) are both the generator matrix for a simplex code. The weight of each stabilizer generator is \(2^{r-1}\).

Protection

Protects against any single qubit error.

Transversal Gates

Pauli, Hadamard, and CNOT gates.

Decoding

Latin rectangle encoder [2].Efficient decoder [3].

Fault Tolerance

Syndrome measurement can be done with two ancillary flag qubits [4].Concatenations of quantum Hamming codes with the \([[4,2,2]]\) and \(C_6\) codes yield fault-tolerant quantum computation with constant space and quasi-polylogarithmic time overheads [3,5].

Threshold

Concatenated threshold requiring constant-space and quasi-polylogarithmic time overhead [3].

Cousins

  • \([2^r-1,2^r-r-1,3]\) Hamming code— Quantum Hamming codes result from applying the CSS construction to Hamming codes and their duals the simplex codes.
  • \([2^m-1,m,2^{m-1}]\) simplex code— Quantum Hamming codes result from applying the CSS construction to Hamming codes and their duals the simplex codes.
  • Concatenated qubit code— Concatenations of quantum Hamming codes with the \([[4,2,2]]\) and \(C_6\) codes yield fault-tolerant quantum computation with constant space and quasi-polylogarithmic time overheads [3,5]. Quantum Hamming codes can also be concatenated with surface codes [6].
  • \([[4,2,2]]\) Four-qubit code— Concatenations of quantum Hamming codes with the \([[4,2,2]]\) and \(C_6\) codes yield fault-tolerant quantum computation with constant space and quasi-polylogarithmic time overheads [3,5].
  • \([[6,2,2]]\) \(C_6\) code— Concatenations of quantum Hamming codes with the \([[4,2,2]]\) and \(C_6\) codes yield fault-tolerant quantum computation with constant space and quasi-polylogarithmic time overheads [3,5].
  • Kitaev surface code— Quantum Hamming codes can be concatenated with surface codes [6].
  • Quantum data-syndrome (QDS) code— Codes such as the quantum Hamming code can be expanded to QDS codes using almost any good binary linear code because their stabilizer generators all have the same weight [7].

References

[1]
A. M. Steane, “Simple quantum error-correcting codes”, Physical Review A 54, 4741 (1996) arXiv:quant-ph/9605021 DOI
[2]
A. M. Steane, “Fast fault-tolerant filtering of quantum codewords”, (2004) arXiv:quant-ph/0202036
[3]
H. Yamasaki and M. Koashi, “Time-Efficient Constant-Space-Overhead Fault-Tolerant Quantum Computation”, Nature Physics 20, 247 (2024) arXiv:2207.08826 DOI
[4]
R. Chao and B. W. Reichardt, “Quantum Error Correction with Only Two Extra Qubits”, Physical Review Letters 121, (2018) arXiv:1705.02329 DOI
[5]
S. Yoshida, S. Tamiya, and H. Yamasaki, “Concatenate codes, save qubits”, (2024) arXiv:2402.09606
[6]
M. Fang and D. Su, “Quantum memory based on concatenating surface codes and quantum Hamming codes”, (2024) arXiv:2407.16176
[7]
A. Ashikhmin, C.-Y. Lai, and T. A. Brun, “Quantum Data-Syndrome Codes”, IEEE Journal on Selected Areas in Communications 38, 449 (2020) arXiv:1907.01393 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: quantum_hamming_css

Cite as:
\([[2^r-1, 2^r-2r-1, 3]]\) quantum Hamming code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/quantum_hamming_css
BibTeX:
@incollection{eczoo_quantum_hamming_css, title={\([[2^r-1, 2^r-2r-1, 3]]\) quantum Hamming code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/quantum_hamming_css} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/quantum_hamming_css

Cite as:

\([[2^r-1, 2^r-2r-1, 3]]\) quantum Hamming code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/quantum_hamming_css

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/stabilizer/rm/quantum_hamming_css.yml.