[Jump to code hierarchy]

\([2^r-1,2^r-r-1,3]\) Hamming code[1,2]

Alternative names: RM\(^*(r-2,r)\) code.

Description

Member of an infinite family of perfect linear codes with parameters \([2^r-1,2^r-r-1, 3]\) for \(r \geq 2\). Their \(r \times (2^r-1) \) parity-check matrix \(H\) has all possible non-zero \(r\)-bit strings as its columns. Adding a parity check yields the \([2^r,2^r-r-1, 4]\) extended Hamming code.

Protection

Can detect 1-bit and 2-bit errors, and can correct 1-bit errors.

Rate

Asymptotic rate \(k/n = 1-\frac{\log n}{n} \to 1\) and normalized distance \(d/n \to 0\).

Realizations

Commonly used when error rates are very low, for example, computer RAM or integrated circuits [3].Hamming-code based matrix embedding used in steganography [4,5].

Notes

See Kaiserslautern database [6] for explicit codes.

Cousins

Primary Hierarchy

Parents
Binary Hamming codes are binary primitive narrow-sense BCH codes [18; Corr. 5.1.5]. Binary Hamming codes can be written in cyclic form [19; Thm. 12.22].
Binary Hamming codes are binary primitive narrow-sense BCH codes [18; Corr. 5.1.5]. Binary Hamming codes can be written in cyclic form [19; Thm. 12.22].
Hamming codes are lexicodes [20].
Binary Hamming codes and several of their extended, punctured, and shortened versions are LP universally optimal codes [21].
\([2^r-1,2^r-r-1,3]\) Hamming code
Children

References

[1]
R. W. Hamming, “Error Detecting and Error Correcting Codes”, Bell System Technical Journal 29, 147 (1950) DOI
[2]
M. J. E. Golay, Notes on digital coding, Proc. IEEE, 37 (1949) 657.
[3]
R. Hentschke, F. Marques, F. Lima, L. Carro, A. Susin, and R. Reis, “Analyzing area and performance penalty of protecting different digital modules with Hamming code and triple modular redundancy”, Proceedings. 15th Symposium on Integrated Circuits and Systems Design 95 DOI
[4]
Crandall, Ron. "Some notes on steganography." Posted on steganography mailing list 1998 (1998): 1-6.
[5]
A. Westfeld, “F5—A Steganographic Algorithm”, Lecture Notes in Computer Science 289 (2001) DOI
[6]
Michael Helmling, Stefan Scholl, Florian Gensheimer, Tobias Dietz, Kira Kraft, Stefan Ruzika, and Norbert Wehn. Database of Channel Codes and ML Simulation Results. URL, 2022.
[7]
Kløve, Torleiv. Error correcting codes for the asymmetric channel. Department of Pure Mathematics, University of Bergen, 1981.
[8]
M. Grassl, P. W. Shor, G. Smith, J. Smolin, and B. Zeng, “New Constructions of Codes for Asymmetric Channels via Concatenation”, IEEE Transactions on Information Theory 61, 1879 (2015) arXiv:1310.7536 DOI
[9]
F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
[10]
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups (Springer New York, 1999) DOI
[11]
A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Sole, “The Z/sub 4/-linearity of Kerdock, Preparata, Goethals, and related codes”, IEEE Transactions on Information Theory 40, 301 (1994) DOI
[12]
T. Baumbaugh, Y. Diaz, S. Friesenhahn, F. Manganiello, and A. Vetter, “Batch Codes from Hamming and Reed-Müller Codes”, (2017) arXiv:1710.07386
[13]
I. F. Blake, Essays on Coding Theory (Cambridge University Press, 2024) DOI
[14]
M. B. Hastings, “Small Majorana Fermion Codes”, (2017) arXiv:1703.00612
[15]
A. B. Khesin, J. Z. Lu, and P. W. Shor, “Universal graph representation of stabilizer codes”, (2024) arXiv:2411.14448
[16]
N. Chancellor, A. Kissinger, S. Zohren, J. Roffe, and D. Horsman, “Graphical structures for design and verification of quantum error correction”, Quantum Science and Technology 8, 045028 (2023) arXiv:1611.08012 DOI
[17]
P. J. Nadkarni, S. Adonsou, G. Dauphinais, D. W. Kribs, and M. Vasmer, “Unified and Generalized Approach to Entanglement-Assisted Quantum Error Correction”, (2024) arXiv:2411.14389
[18]
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, 2003) DOI
[19]
R. Hill. A First Course In Coding Theory. Oxford University Press, 1988.
[20]
J. Conway and N. Sloane, “Lexicographic codes: Error-correcting codes from game theory”, IEEE Transactions on Information Theory 32, 337 (1986) DOI
[21]
H. Cohn and Y. Zhao, “Energy-Minimizing Error-Correcting Codes”, IEEE Transactions on Information Theory 60, 7442 (2014) arXiv:1212.1913 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: hamming

Cite as:
\([2^r-1,2^r-r-1,3]\) Hamming code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/hamming
BibTeX:
@incollection{eczoo_hamming, title={\([2^r-1,2^r-r-1,3]\) Hamming code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/hamming} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/hamming

Cite as:

\([2^r-1,2^r-r-1,3]\) Hamming code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/hamming

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/bits/easy/hamming/hamming.yml.