Cyclic code[15] 


A code of length \(n\) over an alphabet is cyclic if, for each codeword \(c_1 c_2 \cdots c_n\), the cyclically shifted string \(c_n c_1 \cdots c_{n-1}\) is also a codeword.


  • Quasi-cyclic code — Quasi-cyclic codes with \(\ell=1\) are cyclic.
  • Constacyclic code — Constacyclic codes with \(\alpha=1\) are cyclic.
  • Skew-cyclic code — Skew-cyclic codes with \(\theta\) trivial are cyclic.
  • Group-orbit code — All codewords of a cyclic code can be obtained from any codeword via cyclic shifts, meaning that the code consists of only one orbit.




E. Prange, Cyclic Error-Correcting Codes in Two Symbols, TN-57-/03, (September 1957)
E. Prange, Some cyclic error-correcting codes with simple decoding algorithms, TN-58-156, (April 1958)
E. Prange, The use of coset equivalence in the analysis and decoding of group codes, TN-59-/64, (1959)
E. Prange, An algorithm for factoring xn - I over a finite field. TN-59-/75, (October 1959)
W. W. Peterson and E. J. Weldon, Error-correcting codes. MIT press 1972.
Self-Dual Codes and Invariant Theory (Springer-Verlag, 2006) DOI
B. Audoux and A. Couvreur, “On tensor products of CSS Codes”, (2018) arXiv:1512.07081
Page edit log

Your contribution is welcome!

on (edit & pull request)— see instructions

edit on this site

Zoo Code ID: cyclic

Cite as:
“Cyclic code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022.
@incollection{eczoo_cyclic, title={Cyclic code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:

Cite as:

“Cyclic code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022.