Group-orbit code 

Description

Code whose set of codewords forms an orbit of some reference codeword under a subgroup of the automorphism group, i.e., the group of distance-preserving transformations on the metric space defined with the code's alphabet.

Parent

  • Error-correcting code (ECC) — Not all codes are group-orbit codes, and more generally one can classify codewords into orbits of the automorphism group [1].

Children

  • Binary group-orbit code — Binary group-orbit codes are group-orbit codes in Hamming space.
  • Linear code over \(G\) — The set of codewords of a linear code over \(G\) can be thought of as an orbit of a particular codeword under the group formed by the code. However, group orbit codes do not have to be linear [2; Remark 8.4.3].
  • Multi-channel group-orbit code
  • Cyclic code — All codewords of a cyclic code can be obtained from any codeword via cyclic shifts, meaning that the code consists of only one orbit.
  • Group-algebra code — A \(q\)-ary group-orbit code hosts a transitive group action. If the action is also free, then the code is a group-algebra code.
  • Slepian group-orbit code — Slepian group-orbit codes are group-orbit codes on spheres.

References

[1]
J. H. Conway and N. J. A. Sloane, “Orbit and coset analysis of the Golay and related codes”, IEEE Transactions on Information Theory 36, 1038 (1990) DOI
[2]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: group_orbit

Cite as:
“Group-orbit code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/group_orbit
BibTeX:
@incollection{eczoo_group_orbit, title={Group-orbit code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/group_orbit} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/group_orbit

Cite as:

“Group-orbit code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/group_orbit

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/properties/group_orbit.yml.