Divisible code[1]

Description

A linear \(q\)-ary block code is \(\Delta\)-divisible if the Hamming weight of each of its codewords is divisible by divisor \(\Delta\). A \(2\)-divisible (\(4\)-divisible) code is called even (doubly-even) [2]. A code is called singly even if all codewords are even and at least one has weight equal to 2 modulo 4.

Notes

See Ref. [3] for an introduction to triply-even binary linear codes and their construction from doubly-even codes.

Parent

Children

Cousins

  • Dual linear code — Binary self-dual codes are singly-even. The minimum distance of doubly-even binary self-dual codes asymptotically satisfies \(d\leq0.1664n+o(n)\) [6].
  • Ternary Golay Code — Extended ternary Golay code is 3-divisible ([7], pg. 296).
  • Griesmer code — Griesmer codes over prime fields are divisible [8].
  • Quantum divisible code — Quantum divisible codes are constructed via the CSS construction using a divisible linear binary code.
  • Doubled color code — Doubled color codes are constructed using a generalization of the doubling transformation [3] that combine doubly-even codes to make triply-even codes.

References

[1]
H. N. Ward, “Divisible codes”, Archiv der Mathematik 36, 485 (1981) DOI
[2]
S. Kurz, “Divisible Codes”, (2022) arXiv:2112.11763
[3]
K. Betsumiya and A. Munemasa, “On triply even binary codes”, Journal of the London Mathematical Society 86, 1 (2012) arXiv:1012.4134 DOI
[4]
R. J. McEliece, “On periodic sequences from GF(q)”, Journal of Combinatorial Theory, Series A 10, 80 (1971) DOI
[5]
R. J. McEliece, “Weight congruences for p-ary cyclic codes”, Discrete Mathematics 3, 177 (1972) DOI
[6]
I. Krasikov and S. Litsyn, “Linear programming bounds for doubly-even self-dual codes”, IEEE Transactions on Information Theory 43, 1238 (1997) DOI
[7]
J. Bierbrauer, Introduction to Coding Theory (Chapman and Hall/CRC, 2016) DOI
[8]
H. N. Ward, “Divisibility of Codes Meeting the Griesmer Bound”, Journal of Combinatorial Theory, Series A 83, 79 (1998) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)

edit on this site

Zoo Code ID: divisible

Cite as:
“Divisible code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/divisible
BibTeX:
@incollection{eczoo_divisible, title={Divisible code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/divisible} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/divisible

Cite as:

“Divisible code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/divisible

Github: https://github.com/errorcorrectionzoo/eczoo_data/tree/main/codes/classical/q-ary_digits/weight/divisible.yml.