[Jump to code hierarchy]

Ternary Golay code[1,2]

Description

A \([11,6,5]_3\) perfect ternary linear code with connections to various areas of mathematics, e.g., lattices [3] and sporadic simple groups [4]. Adding a parity bit to the code results in the self-dual \([12,6,6]_3\) extended ternary Golay code. Up to equivalence, both codes are unique for their respective parameters [5]. The dual of the ternary Golay code is a \([11,5,6]_3\) projective two-weight subcode.

A generator matrix for the ternary Golay code is \begin{align} \left(\begin{array}{ccccccccccc} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 & 1 & 2 & 1 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 0 & 1 & 2 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 2 & 2 & 1 & 1 \\ \end{array}\right)~. \tag*{(1)}\end{align}

The automorphism group of the ternary Golay code is the Mathieu group \(\mathcal{M}_{11}\), and the automorphism group of the extended ternary Golay code is the double cover of the Mathieu group \(\mathcal{M}_{12}\), two of the sporadic simple groups.

Decoding

Decoder for the extended ternary Golay code using the tetracode [6].

Realizations

Code used in football pools with at least one good bet [7,8]. In fact, the code was originally constructed by Juhani Virtakallio and published in the Finnish football pool magazine Veikkaaja [1,8,9].Proofs of the quantum mechanical Kochen-Specker theorem [10].

Cousins

Primary Hierarchy

Parents
The ternary Golay code is a quadratic-residue code over \(GF(3)\) with residue set \(Q = \{1, 3, 4, 5, 9\} \) and generator polynomial \(x^5 + x^4 - x^3 + x^2 - 1\) ([4], Ch. 16).
The ternary Golay code is perfect.
The ternary Golay code and one of its shortened versions are \(q\)-ary sharp configurations [19; Table 12.1].
Ternary Golay code

References

[1]
Veikkaus-Lotto (Veikkaaja) magazine, issues 27, 28, and 33, August-September 1947.
[2]
M. J. E. Golay, Notes on digital coding, Proc. IEEE, 37 (1949) 657.
[3]
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups (Springer New York, 1999) DOI
[4]
F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
[5]
P. Delsarte and J. M. Goethals, “Unrestricted codes with the golay parameters are unique”, Discrete Mathematics 12, 211 (1975) DOI
[6]
V. Pless, “Decoding the Golay codes”, IEEE Transactions on Information Theory 32, 561 (1986) DOI
[7]
H. Hämäläinen and S. Rankinen, “Upper bounds for football pool problems and mixed covering codes”, Journal of Combinatorial Theory, Series A 56, 84 (1991) DOI
[8]
A. Barg, “At the Dawn of the Theory of Codes”, The Mathematical Intelligencer 15, 20 (1993) DOI
[9]
T. Thompson, From Error-Correcting Codes Through Sphere Packings to Simple Groups (American Mathematical Society, 1983) DOI
[10]
M. Waegell and P. K. Aravind, “Golay codes and quantum contextuality”, Physical Review A 106, (2022) arXiv:2206.04209 DOI
[11]
J. Bierbrauer, Introduction to Coding Theory (Chapman and Hall/CRC, 2016) DOI
[12]
H. Cohn and Y. Zhao, “Energy-Minimizing Error-Correcting Codes”, IEEE Transactions on Information Theory 60, 7442 (2014) arXiv:1212.1913 DOI
[13]
A. E. Brouwer, "Two-weight Codes." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
[14]
N. Tzanakis and J. Wolfskill, “The diophantine equation x2 = 4qa2 + 4q + 1, with an application to coding theory”, Journal of Number Theory 26, 96 (1987) DOI
[15]
A. E. Brouwer and H. Van Maldeghem, Strongly Regular Graphs (Cambridge University Press, 2022) DOI
[16]
R. A. Games, “The packing problem for projective geometries over GF(3) with dimension greater than five”, Journal of Combinatorial Theory, Series A 35, 126 (1983) DOI
[17]
L. J. Paige, “A Note on the Mathieu Groups”, Canadian Journal of Mathematics 9, 15 (1957) DOI
[18]
M. HUBER, “CODING THEORY AND ALGEBRAIC COMBINATORICS”, Selected Topics in Information and Coding Theory 121 (2010) arXiv:0811.1254 DOI
[19]
P. Boyvalenkov, D. Danev, "Linear programming bounds." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: ternary_golay

Cite as:
“Ternary Golay code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/ternary_golay
BibTeX:
@incollection{eczoo_ternary_golay, title={Ternary Golay code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/ternary_golay} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/ternary_golay

Cite as:

“Ternary Golay code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/ternary_golay

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/easy/ternary_golay.yml.