Group-algebra code[1]
Description
An \( [n,k]_q \) code whose automorphism group includes a finite group \( G \) of size \(n \), which acts on the code via its regular representation. This makes the code a \(G\)-submodule of the module \(GF(q)^n\) [3][2; Lemma 2.3]. A group-algebra code for an Abelian group is called an Abelian group-algebra code.
Group algebra
For a given field \(\mathbb{F}_q\) and a finite group \(G\) of order \(|G|=\ell\), the group algebra (a ring) \(\mathbb{F}_q[G]\) is defined as an \(\mathbb{F}_q\)-linear space of all formal sums \begin{align} \label{eq:algebra-element} x\equiv \sum_{g\in G}x_g g,\quad x_g\in \mathbb{F}_q, \tag*{(1)}\end{align} where group elements \(g\in G\) serve as basis vectors, equipped with the product naturally associated with the group operation, \begin{align} \label{eq:FG-product} ab=\sum_{g\in G}\biggl(\sum_{h\in G} a_h b_{h^{-1}g}\biggr) g, \quad a,b\in \mathbb{F}_q[G]. \tag*{(2)}\end{align}
Group-algebra code
A group-algebra code is a \( k \)-dimensional linear subspace of the group algebra of \( G\) with coefficients in the field \(GF(q) = \mathbb{F}_q\) with \(q\) elements. To be precise, the code must be closed under permutations corresponding to the elements of the group \( G \); therefore, \( G \) must be a subgroup of the permutation automorphism group of the code, which is defined as the group of permutations of the physical bits that preserve the code space. This leads us to the formal definition of a group-algebra code: a group-algebra code is an ideal in the group algebra \( \mathbb{F}_q G \).
A linear code is a group-algebra code for a group \(G\) if and only if \(G\) is isomorphic to a regular subgroup of the code's permutation automorphism group [4][5; Thm. 16.4.7].
Notes
See [5][6; pg. 58] for introductions to group-algebra codes.Not all Abelian group-algebra codes are for cyclic groups (cyclic codes) or for elementary Abelian \( p \) groups (e.g. Reed Muller codes [7]). For example, there is a binary code with parameters \( [45,13,16] \) which is an Abelian group-algebra code for the group \( G = \mathbb{Z}_3 \times \mathbb{Z}_{15} \).Cousins
- \([48,24,12]\) self-dual code— The \([48,24,12]\) self-dual code is a group code for \(G\) being a dihedral group [8][5; Exam. 16.5.1].
- Hermitian code— Some Hermitian codes are group-algebra codes [9][5; Remark 16.4.14].
- Klein-quartic code— Some Klein-quartic codes are group-algebra codes [5; Remark 16.4.14].
- Suzuki-curve code— Some Suzuki-curve codes are group-algebra codes [5; Remark 16.4.14].
- Generalized RM (GRM) code— GRM codes over prime-power fields are group-algebra codes [1,10,11][5; Exam. 16.4.11].
- Two-block group-algebra (2BGA) codes
Member of code lists
Primary Hierarchy
References
- [1]
- S. D. Berman, “On the theory of group codes”, Cybernetics 3, 25 (1969) DOI
- [2]
- A. Günther and G. Nebe, “Automorphisms of doubly even self-dual binary codes”, Bulletin of the London Mathematical Society 41, 769 (2009) arXiv:0810.3787 DOI
- [3]
- Günther, Annika. Automorphism groups of self-dual codes. Diss. Aachen, Techn. Hochsch., Diss., 2009, 2009.
- [4]
- J. J. Bernal, Á. del Río, and J. J. Simón, “An intrinsical description of group codes”, Designs, Codes and Cryptography 51, 289 (2009) DOI
- [5]
- W. Willems, "Codes in Group Algebras." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
- [6]
- M. A. Tsfasman and S. G. Vlăduţ, Algebraic-Geometric Codes (Springer Netherlands, 1991) DOI
- [7]
- S. D. Berman, “Semisimple cyclic and Abelian codes. II”, Cybernetics 3, 17 (1970) DOI
- [8]
- I. McLoughlin, “A group ring construction of the [48,24,12] type II linear block code”, Designs, Codes and Cryptography 63, 29 (2011) DOI
- [9]
- Hansen, Johan P. Group codes on algebraic curves. Universität zu Göttingen. SFB Geometrie und Analysis, 1987.
- [10]
- Charpin, Pascale. Codes idéaux de certaines algèbres modulaires. Diss. 1982.
- [11]
- P. Landrock and O. Manz, “Classical codes as ideals in group algebras”, Designs, Codes and Cryptography 2, 273 (1992) DOI
- [12]
- I. McLoughlin and T. Hurley, “A Group Ring Construction of the Extended Binary Golay Code”, IEEE Transactions on Information Theory 54, 4381 (2008) DOI
- [13]
- S. T. Dougherty, J. Gildea, R. Taylor, and A. Tylyshchak, “Group rings, G-codes and constructions of self-dual and formally self-dual codes”, Designs, Codes and Cryptography 86, 2115 (2017) DOI
- [14]
- F. Bernhardt, P. Landrock, and O. Manz, “The extended golay codes considered as ideals”, Journal of Combinatorial Theory, Series A 55, 235 (1990) DOI
- [15]
- S. Bhandari, P. Harsha, M. Kumar, and M. Sudan, “Ideal-Theoretic Explanation of Capacity-Achieving Decoding”, (2021) arXiv:2103.07930 DOI
Page edit log
- Victor V. Albert (2022-01-03) — most recent
- Victor V. Albert (2022-11-18)
- Ian Teixeira (2021-12-19)
Cite as:
“Group-algebra code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/group