[Jump to code hierarchy]

Perfect code

Description

A type of \(q\)-ary code whose parameters satisfy the Hamming bound with equality.

An \((n,K,2t+1)_q\) code is perfect if parameters \(n\), \(K\), \(t\), and \(q\) are such that the Hamming (a.k.a. sphere-packing) bound \begin{align} \sum_{j=0}^{t}(q-1)^{j}{n \choose j}\leq q^{n}/K \tag*{(1)}\end{align} becomes an equality. In other words, the code's packing radius matches its covering radius.

For example, for a binary \(q=2\) code with one logical bit (\(K=2\)) and \(t=1\), the bound becomes \(n+1 \leq 2^{n-1}\). Perfect codes are those for which balls of Hamming radius \(t\) exactly fill the space of all \(n\) \(q\)-ary strings.

Any perfect linear code is either a repetition code, a Hamming code, or a binary or ternary Golay code [1]. If \(q\) is a prime power, any distance-three code is either a Hamming code or a nonlinear code with the same parameters; see [2; pg. 100] for more details. There are many nonlinear perfect codes [315].

Cousins

Primary Hierarchy

Parents
Perfect codes and extended perfect codes are completely regular [21].
Perfect codes are covering codes with minimum number of codewords
Perfect code
Children
The ternary Golay code is perfect.

References

[1]
K. Lindström, “All nearly perfect codes are known”, Information and Control 35, 40 (1977) DOI
[2]
V. D. Tonchev, "Codes and designs." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
[3]
H. S. Shapiro and D. L. Slotnick, “On the Mathematical Theory of Error-Correcting Codes”, IBM Journal of Research and Development 3, 25 (1959) DOI
[4]
J. Schnheim, “On linear and nonlinear single-error-correcting q-nary perfect codes”, Information and Control 12, 23 (1968) DOI
[5]
Lindström, Bernt. "On group and nongroup perfect codes in q symbols." Mathematica Scandinavica 25.2 (1969): 149-158.
[6]
M. Mollard, “Une nouvelle famille de 3-codes parfaits sur GF(q)”, Discrete Mathematics 49, 209 (1984) DOI
[7]
M. Mollard, “A Generalized Parity Function and Its Use in the Construction of Perfect Codes”, SIAM Journal on Algebraic Discrete Methods 7, 113 (1986) DOI
[8]
H. Bauer, B. Ganter, and F. Hergert, “Algebraic techniques for nonlinear codes”, Combinatorica 3, 21 (1983) DOI
[9]
Laborde, J. M., & SCHÜTZENBERGER, M. (1983). Une nouvelle famille de codes binaires, parfaits, non linéaires. Comptes rendus des séances de l'Académie des sciences. Série 1, Mathématique, 297(1), 67-70.
[10]
J. L. Vasilyev On nongroup close-packed codes (in Russian), Probl. Kibernet., 8 (1962), 337-339, translated in Probleme der Kibernetik 8 (1965), 375-378.
[11]
D. S. Krotov, “Lower bounds for the number of m-quasigroups of order four and of the number of perfect binary codes”, Diskretn. Anal. Issled. Oper., Ser. 1, 7:2 (2000), 47–53
[12]
K. T. Phelps, “A Combinatorial Construction of Perfect Codes”, SIAM Journal on Algebraic Discrete Methods 4, 398 (1983) DOI
[13]
T. Etzion and A. Vardy, “Perfect binary codes: constructions, properties, and enumeration”, IEEE Transactions on Information Theory 40, 754 (1994) DOI
[14]
D. S. Krotov and S. V. Avgustinovich, “On the Number of \(1\)-Perfect Binary Codes: A Lower Bound”, IEEE Transactions on Information Theory 54, 1760 (2008) arXiv:math/0608278 DOI
[15]
P. Ostergard and O. Pottonen, “The Perfect Binary One-Error-Correcting Codes of Length <formula formulatype="inline"><tex Notation="TeX">\(15\)</tex></formula>: Part I—Classification”, IEEE Transactions on Information Theory 55, 4657 (2009) arXiv:0806.2513 DOI
[16]
E. F. Assmus, Jr. and H. F. Mattson, Jr., “Coding and Combinatorics”, SIAM Review 16, 349 (1974) DOI
[17]
K. T. Phelps, “Combinatorial designs and perfect codes”, Electronic Notes in Discrete Mathematics 10, 220 (2001) DOI
[18]
P. A. H. Bours, “On the construction of perfect deletion-correcting codes using design theory”, Designs, Codes and Cryptography 6, 5 (1995) DOI
[19]
A. Mahmoodi, Designs, Codes and Cryptography 14, 81 (1998) DOI
[20]
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, 2003) DOI
[21]
J. Borges, J. Rifà, and V. A. Zinoviev, “On Completely Regular Codes”, (2017) arXiv:1703.08684
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: perfect

Cite as:
“Perfect code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/perfect
BibTeX:
@incollection{eczoo_perfect, title={Perfect code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/perfect} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/perfect

Cite as:

“Perfect code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/perfect

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/packing/perfect.yml.