\(q\)-ary Hamming code[1]

Description

Member of an infinite family of perfect linear \(q\)-ary codes with parameters \([(q^r-1)/(q-1),(q^r-1)/(q-1)-r, 3]_q\) for \(r \geq 2\).

Protection

Can detect 1-bit and 2-bit errors, and can correct 1-dit errors.

Parents

Children

Cousins

References

[1]
M. J. E. Golay, Notes on digital coding, Proc. IEEE, 37 (1949) 657.
[2]
H. Cohn and Y. Zhao, “Energy-Minimizing Error-Correcting Codes”, IEEE Transactions on Information Theory 60, 7442 (2014) arXiv:1212.1913 DOI
[3]
F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
[4]
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, 2003) DOI
[5]
M. A. Tsfasman and S. G. Vlăduţ, Algebraic-Geometric Codes (Springer Netherlands, 1991) DOI
[6]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)

edit on this site

Zoo Code ID: q-ary_hamming

Cite as:
\(q\)-ary Hamming code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/q-ary_hamming
BibTeX:
@incollection{eczoo_q-ary_hamming, title={\(q\)-ary Hamming code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/q-ary_hamming} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/q-ary_hamming

Cite as:

\(q\)-ary Hamming code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/q-ary_hamming

Github: https://github.com/errorcorrectionzoo/eczoo_data/tree/main/codes/classical/q-ary_digits/easy/q-ary_hamming.yml.