[Jump to code hierarchy]

\(q\)-ary Hamming code[1,2]

Description

Member of an infinite family of perfect linear \(q\)-ary codes with parameters \([(q^r-1)/(q-1),(q^r-1)/(q-1)-r, 3]_q\) for \(r \geq 2\).

The automorphism group is known [3].

Protection

Can detect 1-bit and 2-bit errors, and can correct 1-dit errors.

Cousins

  • Incidence-matrix projective code— Columns of a Hamming parity-check matrix correspond to one-dimensional subspaces of \(\mathbb{F}_q^n\).
  • Cyclic linear \(q\)-ary code— Hamming codes are equivalent to cyclic codes when \(q\) and \(r\) are relatively prime ([4], pg. 194).
  • Binary BCH code— Some narrow sense BCH codes of length \(n=(q^r-1)/(q-1)\) such that \(\text{gcd}(r,q-1)=1\) are \(q\)-ary Hamming codes ([5], Thm. 5.1.4).
  • \([6,3,4]_4\) Hexacode— The hexacode is an extended quaternary Hamming code [5; Exer. 578].
  • \(q\)-ary simplex code— \(q\)-ary Hamming and \(q\)-ary simplex codes are dual to each other [6; pg. 45]
  • Perfect quantum code— For qubits (\(q=2\)), the only nontrivial perfect codes are the stabilizer code family \([[(4^r-1)/3, (4^r-1)/3 - 2r, 3]]\) for \(r \geq 2\), obtained from Hamming codes over \(\mathbb{F}_4\) via the Hermitian construction [7,8]. These codes are related to partial spreads in projective geometry [9].

Primary Hierarchy

Parents
Hamming codes and their punctured and shortened versions are LP universally optimal codes [10].
\(q\)-ary Hamming code
Children
The \(q\)-ary Hamming codes reduce to the Hamming codes at \(q=2\).
The tetracode is equivalent to the \(r=2\) \(3\)-ary Hamming code.

References

[1]
R. A. FISHER, “A SYSTEM OF CONFOUNDING FOR FACTORS WITH MORE THAN TWO ALTERNATIVES, GIVING COMPLETELY ORTHOGONAL CUBES AND HIGHER POWERS”, Annals of Eugenics 12, 283 (1943) DOI
[2]
M. J. E. Golay, Notes on digital coding, Proc. IEEE, 37 (1949) 657.
[3]
E. V. Gorkunov, “The group of permutation automorphisms of a q-ary hamming code”, Problems of Information Transmission 45, 309 (2009) DOI
[4]
F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
[5]
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, 2003) DOI
[6]
M. A. Tsfasman and S. G. Vlăduţ, Algebraic-Geometric Codes (Springer Netherlands, 1991) DOI
[7]
D. Gottesman, “Pasting Quantum Codes”, (1996) arXiv:quant-ph/9607027
[8]
A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, “Quantum Error Correction via Codes over GF(4)”, (1997) arXiv:quant-ph/9608006
[9]
J. Bierbrauer, G. Faina, M. Giulietti, S. Marcugini, and F. Pambianco, “The geometry of quantum codes”, Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial 6, 53 (2008) DOI
[10]
H. Cohn and Y. Zhao, “Energy-Minimizing Error-Correcting Codes”, IEEE Transactions on Information Theory 60, 7442 (2014) arXiv:1212.1913 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: q-ary_hamming

Cite as:
\(q\)-ary Hamming code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/q-ary_hamming
BibTeX:
@incollection{eczoo_q-ary_hamming, title={\(q\)-ary Hamming code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/q-ary_hamming} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/q-ary_hamming

Cite as:

\(q\)-ary Hamming code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/q-ary_hamming

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/easy/q-ary_hamming.yml.