\(q\)-ary Hamming code[1,2] 

Description

Member of an infinite family of perfect linear \(q\)-ary codes with parameters \([(q^r-1)/(q-1),(q^r-1)/(q-1)-r, 3]_q\) for \(r \geq 2\).

The automorphism group is known [3].

Protection

Can detect 1-bit and 2-bit errors, and can correct 1-dit errors.

Parents

Children

Cousins

References

[1]
R. A. FISHER, “A SYSTEM OF CONFOUNDING FOR FACTORS WITH MORE THAN TWO ALTERNATIVES, GIVING COMPLETELY ORTHOGONAL CUBES AND HIGHER POWERS”, Annals of Eugenics 12, 283 (1943) DOI
[2]
M. J. E. Golay, Notes on digital coding, Proc. IEEE, 37 (1949) 657.
[3]
E. V. Gorkunov, “The group of permutation automorphisms of a q-ary hamming code”, Problems of Information Transmission 45, 309 (2009) DOI
[4]
H. Cohn and Y. Zhao, “Energy-Minimizing Error-Correcting Codes”, IEEE Transactions on Information Theory 60, 7442 (2014) arXiv:1212.1913 DOI
[5]
F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
[6]
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, 2003) DOI
[7]
M. A. Tsfasman and S. G. Vlăduţ, Algebraic-Geometric Codes (Springer Netherlands, 1991) DOI
[8]
Taussky, Olga, and John Todd. "Covering theorems for groups." Bulletin of the American Mathematical Society. Vol. 54. No. 3. 201 CHARLES ST, PROVIDENCE, RI 02940-2213: AMER MATHEMATICAL SOC, 1948.
[9]
J. G. Kalbfleisch and R. G. Stanton, “A Combinatorial Problem in Matching”, Journal of the London Mathematical Society s1-44, 60 (1969) DOI
[10]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: q-ary_hamming

Cite as:
\(q\)-ary Hamming code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/q-ary_hamming
BibTeX:
@incollection{eczoo_q-ary_hamming, title={\(q\)-ary Hamming code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/q-ary_hamming} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/q-ary_hamming

Cite as:

\(q\)-ary Hamming code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/q-ary_hamming

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/easy/q-ary_hamming.yml.