[Jump to code hierarchy]

Hexacode[1,2]

Description

The \([6,3,4]_4\) self-dual MDS code that has connections to projective geometry, lattices [2], and conformal field theory [3]. Puncturing the code yields the perfect \([5,3,3]_4\) quaternary Hamming code known as the shortened hexacode or shorter hexacode [4]. Both codes are sometimes refereed to as Golay codes over \(GF(4)\).

A generator matrix for the hexacode is \begin{align} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & \omega\\ 0 & 1 & 0 & 1 & \omega & 1\\ 0 & 0 & 1 & \omega & 1 & 1 \end{pmatrix}~, \tag*{(1)}\end{align} where \(GF(4) = \{0,1,\omega, \bar{\omega}\}\) is the quaternary Galois field.

Decoding

Bounded-distance decoder requiring at most 34 real operations [5].

Notes

See [6; Sec. 10.3] for an exposition.See corresponding MinT database entry [7].

Cousins

Primary Hierarchy

Parents
Columns of hexacode's generator matrix represent the six points of a hyperoval in the projective plane \(PG(2,4)\) [14; pg. 289][15; Exam. 19.2.1].
The hexacode is an evaluation AG code over the quaternary Galois field \(GF(4) = \{0,1,\omega, \bar{\omega}\}\) with \(\cal X\) defined by \(x^2 y + \omega y^2 z + \bar{\omega} z^2 x = 0\) [16; Exam. 2.77].
The hexacode is the smallest example of an extended quadratic-residue code of Type \(4^H\) [17; Sec. 2.4.6][6; Exer. 363]. The shortened hexacode is an odd-like quadratic-residue code [6; Exam. 6.6.8].
The hexacode is Hermitian self-dual and, as a result, is also trace-Hermitian self-dual additive [6; Sec. 9.10]. The hexacode and the shortened hexacode are extremal [6; Tab. 9.14][4; Tm. 12].
A version of the hexacode is recovered for Dennison code parameters \(i=1\) and \(a=2\) [14].
Hexacodewords can be arranged in an order from smallest to largest, with each codeword differing at four places from the next [18][19; pg. 327].
Hexacode

References

[1]
K. A. Bush, “Orthogonal Arrays of Index Unity”, The Annals of Mathematical Statistics 23, 426 (1952) DOI
[2]
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups (Springer New York, 1999) DOI
[3]
J. A. Harvey and G. W. Moore, “Moonshine, superconformal symmetry, and quantum error correction”, Journal of High Energy Physics 2020, (2020) arXiv:2003.13700 DOI
[4]
G. Hoehn, “Self-dual Codes over the Kleinian Four Group”, (2000) arXiv:math/0005266
[5]
A. Vardy, “Even more efficient bounded-distance decoding of the hexacode, the Golay code, and the Leech lattice”, IEEE Transactions on Information Theory 41, 1495 (1995) DOI
[6]
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, 2003) DOI
[7]
Rudolf Schürer and Wolfgang Ch. Schmid. “Hexacode.” From MinT—the database of optimal net, code, OA, and OOA parameters. Version: 2015-09-03. https://mint.sbg.ac.at/desc_CHexa.html
[8]
A. J. Scott, “Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions”, Physical Review A 69, (2004) arXiv:quant-ph/0310137 DOI
[9]
G. D. Forney, M. Grassl, and S. Guha, “Convolutional and Tail-Biting Quantum Error-Correcting Codes”, IEEE Transactions on Information Theory 53, 865 (2007) arXiv:quant-ph/0511016 DOI
[10]
F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, “Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence”, Journal of High Energy Physics 2015, (2015) arXiv:1503.06237 DOI
[11]
V. Pless, “Decoding the Golay codes”, IEEE Transactions on Information Theory 32, 561 (1986) DOI
[12]
V. V. Albert, private communication, 2024.
[13]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
[14]
J. Bierbrauer, Introduction to Coding Theory (Chapman and Hall/CRC, 2016) DOI
[15]
A. E. Brouwer, "Two-weight Codes." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
[16]
T. Høholdt, J.H. Van Lint, and R. Pellikaan, 1998. Algebraic geometry codes. Handbook of coding theory, 1 (Part 1), pp.871-961.
[17]
Self-Dual Codes and Invariant Theory (Springer-Verlag, 2006) DOI
[18]
R. A. Wilson, On lexicographic codes of minimal distance 4, Atti Sem. Mat. Fis. Univ. Modena 33 (1984)
[19]
F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: hexacode

Cite as:
“Hexacode”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/hexacode
BibTeX:
@incollection{eczoo_hexacode, title={Hexacode}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/hexacode} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/hexacode

Cite as:

“Hexacode”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/hexacode

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/easy/hexacode.yml.