Polyphase code[111] 

Description

A spherical code obtained from a binary code, \(q\)-ary code, or \(q\)-ary code over \(\mathbb{Z}_q\) via a component-wise mapping of each \(q\)-ary digit to a \(q\)th root of unity.

For example, for the case \(q=4\), one can map either the ring-based alphabet \(\mathbb{Z}_4 = \{0,1,2,3\}\) or the field-based alphabet \(GF(2)^2 = \{00,01,10,11\}\) to the set \(\{1,\theta,\theta^2,\theta^3\}\) for some fourth root of unity \(\theta\).

Notes

See [12; Ch. 7] for more details.

Parents

Children

Cousins

References

[1]
L.-H. Zetterberg, “A class of codes for polyphase signals on a bandlimited Gaussian channel”, IEEE Transactions on Information Theory 11, 385 (1965) DOI
[2]
L.-H. Zetterberg, “Detection of a class of coded and phase-modulated signals”, IEEE Transactions on Information Theory 12, 153 (1966) DOI
[3]
Einarsson, Göran. "Polyphase coding for a Gaussian channel(Polyphase coding for Gaussian channel, investigating PM signal transmission over channel disturbed by additive white Gaussian noise)." Ericsson Technics 24.2 (1968): 75-130.
[4]
Einarsson, Göran. Performance of polyphase signals on a Gaussian channel. 1966.
[5]
Ottoson, Ragnar. "Performance of phase- and amplitude-modulated signals on a Gaussian channel(Phase and amplitude modulated signals transmission over band limited channel disturbed by additive white Gaussian noise)." Ericsson Technics 25.3 (1969): 153-198.
[6]
Nilsson, Magnus. "Linear block codes over rings for phase shift keying." Thesis no. 331, Linkoping University (1993).
[7]
P. Piret, “Bounds for codes over the unit circle”, IEEE Transactions on Information Theory 32, 760 (1986) DOI
[8]
V. V. Ginzburg, “Multidimensional Signals for a Continuous Channel”, Probl. Peredachi Inf., 20:1 (1984), 28–46; Problems Inform. Transmission, 20:1 (1984), 20–34
[9]
Portnoi, S. L. "Characterizations of modulation and encoding systems as concatenated codes." Probl. Inform. Transm. 21.3 (1985): 14-27.
[10]
V. V. Zyablov, S. L. Portnoi, “Modulation/Coding System for a Gaussian Channel”, Probl. Peredachi Inf., 23:3 (1987), 18–26; Problems Inform. Transmission, 23:3 (1987), 187–193
[11]
V.A. Zinoviev, S.N. Litsyn and S.L. Portnoi, Cascade codes in Euclidean space, Problems of Information Transmission, Vol. 25, No. 3, pp. 62-75, 1989.
[12]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: polyphase

Cite as:
“Polyphase code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/polyphase
BibTeX:
@incollection{eczoo_polyphase, title={Polyphase code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/polyphase} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/polyphase

Cite as:

“Polyphase code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/polyphase

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/spherical/q-ary/polyphase.yml.