Simplex spherical code 

Description

Spherical \((n,n+1,2+2/n)\) code whose codewords are all permutations of the \(n+1\)-dimensional vector \((1,1,\cdots,1,-n)\), up to normalization, forming an \(n\)-simplex. Codewords are all equidistant and their components add up to zero. Simplex spherical codewords in 2 (3, 4) dimensions form the vertices of a triangle (tetrahedron, 5-cell) In general, the code makes up the vertices of an \(n\)-simplex. See [1; Sec. 7.7] for a parameterization.

Protection

Simplex spherical codes saturate the absolute bound, the Levenshtein bound and, for \(2 < \rho \leq 4\), the first two Rankin bounds [1]. All simplex codes are unique up to equivalence [1; pg. 18], which follows from saturating the Boroczky bound [2].

Parents

Cousins

References

[1]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
[2]
K. Boroczky, Packing of spheres in spaces of constant curvature, Acta Math. Acad. Sci. Hung. 32 (1978), 243–261.
[3]
H. S. M. Coxeter. Regular polytopes. Courier Corporation, 1973.
[4]
Forney, G. D. (2003). 6.451 Principles of Digital Communication II, Spring 2003.
[5]
C. Bachoc and F. Vallentin, “Optimality and uniqueness of the (4,10,1/6) spherical code”, Journal of Combinatorial Theory, Series A 116, 195 (2009) arXiv:0708.3947 DOI
[6]
H. Bombin, “Gauge Color Codes: Optimal Transversal Gates and Gauge Fixing in Topological Stabilizer Codes”, (2015) arXiv:1311.0879
[7]
B. J. Brown, N. H. Nickerson, and D. E. Browne, “Fault-tolerant error correction with the gauge color code”, Nature Communications 7, (2016) arXiv:1503.08217 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: simplex_spherical

Cite as:
“Simplex spherical code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/simplex_spherical
BibTeX:
@incollection{eczoo_simplex_spherical, title={Simplex spherical code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/simplex_spherical} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/simplex_spherical

Cite as:

“Simplex spherical code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/simplex_spherical

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/spherical/polytope/infinite/simplex_spherical.yml.