[Jump to code hierarchy]

\([2^m-1,m,2^{m-1}]\) simplex code[1,2]

Alternative names: Shortened Hadamard code, RM\(^*(1,m)\) code, Maximum-length feedback-shift-register code.

Description

A member of the equidistant code family that is dual to the \([2^m,2^m-m-1,3]\) Hamming family. The columns of its generator matrix are in one-to-one correspondence with the elements of the projective space \(PG(m-1,2)\), with each column being a chosen representative of the corresponding element. Simplex codes saturate the Plotkin bound and hence have nonzero codewords all of the same weight, \(2^{m-1}\) [3; Th. 11(a)]. The codewords form a \((2^m,2^m+1)\) simplex spherical code under the antipodal mapping.

A punctured simplex code is known as a MacDonald code [4], with parameters \([[2^m-2^u,m,2^{m-1}-2^{u-1}]]\) for \(u \leq m-1\) [5].

The automorphism group of the code is \(GL_{m}(\mathbb{F}_2)\) [3].

Protection

Simplex codes saturate the Plotkin bound and hence have nonzero codewords all of the same weight [3; Th. 11(a)].

Decoding

Serial orthogonal decoder [6,7]Quantum decoder [8].

Cousins

Primary Hierarchy

Parents
Linear binary codes cannot be constant weight, but can have nonzero codewords with constant weight. All such codes are equidistant, and Bonisoli’s theorem states that any equidistant linear binary code is a direct sum of simplex codes [12] (see also Refs. [13,14]).
Simplex codewords form a 2-design [3; pg. 166].
\([2^m-1,m,2^{m-1}]\) simplex code
Children

References

[1]
R. A. FISHER, “THE THEORY OF CONFOUNDING IN FACTORIAL EXPERIMENTS IN RELATION TO THE THEORY OF GROUPS”, Annals of Eugenics 11, 341 (1941) DOI
[2]
C. E. Shannon, “A Mathematical Theory of Communication”, Bell System Technical Journal 27, 379 (1948) DOI
[3]
F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
[4]
J. E. MacDonald, “Design Methods for Maximum Minimum-Distance Error-Correcting Codes”, IBM Journal of Research and Development 4, 43 (1960) DOI
[5]
A. Patel, “Maximalq-nary linear codes with large minimum distance (Corresp.)”, IEEE Transactions on Information Theory 21, 106 (1975) DOI
[6]
R. R. Green, “A serial orthogonal decoder,” JPL Space Programs Summary, vol. 37–39-IV, pp. 247–253, 1966.
[7]
A. Ashikhmin and S. Litsyn, “Simple MAP decoding of first order Reed-Muller and Hamming codes”, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674) 18 DOI
[8]
A. Barg and S. Zhou, “A quantum decoding algorithm for the simplex code”, in Proceedings of the 36th Annual Allerton Conference on Communication, Control and Computing, Monticello, IL, 23–25 September 1998 (UIUC 1998) 359–365
[9]
Rudolf Schürer and Wolfgang Ch. Schmid. “Simplex Code.” From MinT—the database of optimal net, code, OA, and OOA parameters. Version: 2015-09-03. https://mint.sbg.ac.at/desc_CSimplex.html
[10]
Forney, G. D. (2003). 6.451 Principles of Digital Communication II, Spring 2003.
[11]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
[12]
Bonisoli, Arrigo. “Every equidistant linear code is a sequence of dual Hamming codes.” Ars Combinatoria 18 (1984): 181-186.
[13]
A. E.F. Jr. and H. F. Mattson, “Error-correcting codes: An axiomatic approach”, Information and Control 6, 315 (1963) DOI
[14]
E. Weiss, “Linear Codes of Constant Weight”, SIAM Journal on Applied Mathematics 14, 106 (1966) DOI
[15]
M. des Noes, V. Savin, J. M. Brossier, and L. Ros, “Iterative decoding of Gold sequences”, 2015 IEEE International Conference on Communications (ICC) 4840 (2015) DOI
[16]
A. J. Malcolm et al., “Computing Efficiently in QLDPC Codes”, (2025) arXiv:2502.07150
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: simplex

Cite as:
\([2^m-1,m,2^{m-1}]\) simplex code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/simplex
BibTeX:
@incollection{eczoo_simplex, title={\([2^m-1,m,2^{m-1}]\) simplex code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/simplex} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/simplex

Cite as:

\([2^m-1,m,2^{m-1}]\) simplex code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/simplex

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/bits/reed_muller/dual_hamming/simplex.yml.