[Jump to code hierarchy]

\([2^m-1,m,2^{m-1}]\) simplex code[1,2]

Alternative names: Shortened Hadamard code, RM\(^*(1,m)\) code, Maximum-length feedback-shift-register code.

Description

A member of the code family that is dual to the \([2^m,2^m-m-1,3]\) Hamming family. The columns of its generator matrix are in one-to-one correspondence with the elements of the projective space \(PG(m-1,2)\), with each column being a chosen representative of the corresponding element. The codewords form a \((2^m,2^m+1)\) simplex spherical code under the antipodal mapping.

A punctured simplex code is known as a MacDonald code [3], with parameters \([[2^m-2^u,m,2^{m-1}-2^{u-1}]]\) for \(u \leq m-1\) [4].

The automorphism group of the code is \(GL_{m}(\mathbb{F}_{2})\) [5].

Decoding

Serial orthogonal decoder [6,7]Quantum decoder [8].

Cousins

References

[1]
R. A. FISHER, “THE THEORY OF CONFOUNDING IN FACTORIAL EXPERIMENTS IN RELATION TO THE THEORY OF GROUPS”, Annals of Eugenics 11, 341 (1941) DOI
[2]
C. E. Shannon, “A Mathematical Theory of Communication”, Bell System Technical Journal 27, 379 (1948) DOI
[3]
J. E. MacDonald, “Design Methods for Maximum Minimum-Distance Error-Correcting Codes”, IBM Journal of Research and Development 4, 43 (1960) DOI
[4]
A. Patel, “Maximal<tex>q</tex>-nary linear codes with large minimum distance (Corresp.)”, IEEE Transactions on Information Theory 21, 106 (1975) DOI
[5]
F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
[6]
R. R. Green, "A serial orthogonal decoder," JPL Space Programs Summary, vol. 37–39-IV, pp. 247–253, 1966.
[7]
A. Ashikhmin and S. Litsyn, “Simple MAP decoding of first order Reed-Muller and Hamming codes”, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674) 18 DOI
[8]
A. Barg and S. Zhou, “A quantum decoding algorithm for the simplex code”, in Proceedings of the 36th Annual Allerton Conference on Communication, Control and Computing, Monticello, IL, 23–25 September 1998 (UIUC 1998) 359–365
[9]
Rudolf Schürer and Wolfgang Ch. Schmid. “Simplex Code.” From MinT—the database of optimal net, code, OA, and OOA parameters. Version: 2015-09-03. https://mint.sbg.ac.at/desc_CSimplex.html
[10]
Forney, G. D. (2003). 6.451 Principles of Digital Communication II, Spring 2003.
[11]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
[12]
M. des Noes, V. Savin, J. M. Brossier, and L. Ros, “Iterative decoding of Gold sequences”, 2015 IEEE International Conference on Communications (ICC) 4840 (2015) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: simplex

Cite as:
\([2^m-1,m,2^{m-1}]\) simplex code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/simplex
BibTeX:
@incollection{eczoo_simplex, title={\([2^m-1,m,2^{m-1}]\) simplex code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/simplex} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/simplex

Cite as:

\([2^m-1,m,2^{m-1}]\) simplex code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/simplex

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/bits/easy/dual_hamming/simplex.yml.