Here is a list of codes whose codewords have constant weight.

[Jump to code graph excerpt]

Code Description
Combinatorial design A constant-weight binary code that is mapped into a combinatorial \(t\)-design.
Constant-weight code A binary code whose codewords all have the same Hamming weight \(w\).
One-hot code A length-\(n\) binary code whose codewords are those with Hamming weight one. The reverse of this code, where all codewords have Hamming weight \(n-1\) is called a one-cold code.
One-versus-one (OVO) code A length-\(n\) ternary code over \(\{\pm 1,0\}\) whose whose generator matrix has columns with one \(+1\), one \(-1\), and with the rest of the entries zero.
Weight-two code A length-\(n\) binary code whose codewords all have Hamming weight two. Such codes provide slightly extra redundancy for storage of small-scale information such as ZIP codes or decimal digits.
\([2^m-1,m,2^{m-1}]\) simplex code A member of the equidistant code family that is dual to the \([2^m,2^m-m-1,3]\) Hamming family. The columns of its generator matrix are in one-to-one correspondence with the elements of the projective space \(PG(m-1,2)\), with each column being a chosen representative of the corresponding element. The codewords form a \((2^m,2^m+1)\) simplex spherical code under the antipodal mapping.
\([7,3,4]\) simplex code Second-smallest member of the simplex code family. The columns of its generator matrix are in one-to-one correspondence with the elements of the projective space \(PG(2,2)\), with each column being a chosen representative of the corresponding element. The codewords form a \((8,9)\) simplex spherical code under the antipodal mapping.
  • Home
  • Code graph
  • Code lists
  • Concepts glossary
  • Search

Classical Domain

  • Binary Kingdom
  • Galois-field Kingdom
  • Matrix Kingdom
  • Analog Kingdom
  • Spherical Kingdom
  • Ring Kingdom
  • Group Kingdom
  • Homogeneous-space Kingdom

Quantum Domain

  • Qubit Kingdom
  • Modular-qudit Kingdom
  • Galois-qudit Kingdom
  • Bosonic Kingdom
  • Spin Kingdom
  • Group Kingdom
  • Category Kingdom

Classical-quantum Domain

  • Binary c-q Kingdom
  • Bosonic/analog c-q Kingdom

  • Add new code
  • Team
  • About

  • 🌒
≡
Error correction zoo by Victor V. Albert, Philippe Faist, and many contributors. This work is licensed under a CC-BY-SA License. See how to contribute.