Balanced code[1] 

Description

An even-length-\(n\) \(q\)-ary code whose nonzero codewords all have a Hamming weight of \(n/2\). A code is \(\epsilon\)-balanced if the relative weight (i.e., weight divided by \(n\)) of all nonzero codewords lies in the interval \([\frac{1-\epsilon}{2},\frac{1+\epsilon}{2}]\). A code is \(\gamma\)-unbiased if the relative weight lies in the interval \((\frac{1}{2}-\frac{1}{n^{\gamma}},\frac{1}{2}+\frac{1}{n^{\gamma}})\).

Protection

Can detect unidirectional errors, such as a zero going to a one.

Encoding

Efficient encoder [1].

Decoding

Efficient decoder [13].

Realizations

Balanced length-eight code, known as a 6b/8b encoding, used for balancing direct current in a communications system [4]

Parents

Child

  • Hadamard code — Each Hadamard codeword has length \(2^m\) and Hamming weight of \(2^{m-1}\), making this code balanced.

Cousins

References

[1]
D. Knuth, “Efficient balanced codes”, IEEE Transactions on Information Theory 32, 51 (1986) DOI
[2]
S. Al-Bassam and B. Bose, “On balanced codes”, IEEE Transactions on Information Theory 36, 406 (1990) DOI
[3]
K. A. Schouhamer Immink and J. H. Weber, “Very Efficient Balanced Codes”, IEEE Journal on Selected Areas in Communications 28, 188 (2010) DOI
[4]
K. A. S. Immink. Codes for mass data storage systems. Shannon Foundation Publisher, 2004.
[5]
S. Kopparty and S. Saraf, “Local list-decoding and testing of random linear codes from high error”, Proceedings of the forty-second ACM symposium on Theory of computing (2010) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: balanced

Cite as:
“Balanced code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/balanced
BibTeX:
@incollection{eczoo_balanced, title={Balanced code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/balanced} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/balanced

Cite as:

“Balanced code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/balanced

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/weight/balanced.yml.