Binary antipodal code 

Also known as Binary signal constellation.

Description

An \((n,K,4d/n)\) spherical code obtained from a binary \((n,K,d)\) code via the antipodal mapping.

Antipodal mapping: The antipodal mapping, also known as a Euclidean-space image or \(Y_2\) construction), is a component-wise mapping from binary space into Euclidean space. Each coodinate of a binary string is mapped into a sign, \(0\to +1\) and \(1 \to -1\) [1; Example 1.2.1].

Parent

Children

Cousins

  • Binary PSK (BPSK) code — A binary antipodal code can be thought of as a concatenation of a binary outer code with a BPSK inner code.
  • Binary code — Binary antipodal codes are spherical codes obtained from binary codes via the antipodal mapping.
  • Slepian group-orbit code — Any length-\(n\) binary linear code can be used to define a diagonal subgroup of \(n\)-dimensional rotation matrices with \(\pm 1\) on the diagonals via the antipodal mapping \(0\to+1\) and \(1\to-1\). The orbit of this subgroup yields the corresponding Slepian group-orbit code; see [1; Thm. 8.5.2].
  • Biorthogonal spherical code — Each first-order RM\((1,m)\) code maps to a \((2^m,2^{m+1})\) biorthogonal spherical code under the antipodal mapping [2][3; Sec. 6.4][1; pg. 19]. In other words, first-order RM (biorthogonal spherical) codes form orthoplexes in Hamming (Euclidean) space.
  • Hypercube code — Binary antipodal codes are subcodes of a hypercube code since the hypercube code corresponds to the Hamming \(n\)-cube (a.k.a. Boolean hypercube) embedded into the unit \(n\)-sphere.
  • Simplex spherical code — Binary simplex codes map to \((2^m,2^m+1)\) simplex spherical codes under the antipodal mapping [3; Sec. 6.5.2][1; pg. 18]. In other words, simplex (simplex spherical) codes form simplices in Hamming (Euclidean) space.

References

[1]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
[2]
G. D. Forney and G. Ungerboeck, “Modulation and coding for linear Gaussian channels”, IEEE Transactions on Information Theory 44, 2384 (1998) DOI
[3]
Forney, G. D. (2003). 6.451 Principles of Digital Communication II, Spring 2003.
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: binary_antipodal

Cite as:
“Binary antipodal code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/binary_antipodal
BibTeX:
@incollection{eczoo_binary_antipodal, title={Binary antipodal code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/binary_antipodal} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/binary_antipodal

Cite as:

“Binary antipodal code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/binary_antipodal

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/spherical/q-ary/binary_antipodal.yml.