Kerdock spherical code[13] 

Description

Family of \((n=2^{2r},n^2,2-2/\sqrt{n})\) spherical codes for \(r \geq 2\), obtained from Kerdock codes via the antipodal mapping [4; pg. 157]. These codes are optimal for their parameters for \(2\leq r\leq 5\), they are unique for \(r\in\{2,3\}\), and they form spherical 3-designs because their codewords are unions of \(2^{2r-1}+1\) cross polytopes [5].

Parents

Cousins

References

[1]
König, Hermann. "Isometric imbeddings of Euclidean spaces into finite dimensional lp-spaces." Banach Center Publications 34.1 (1995): 79-87. <https://eudml.org/doc/251336>.
[2]
P. J. CAMERON and J. J. SEIDEL, “QUADRATIC FORMS OVER GF(2)”, Geometry and Combinatorics 290 (1991) DOI
[3]
Levenshtein, V. I. "Bounds on the maximal cardinality of a code with bounded modulus of the inner product." Soviet Math. Dokl. Vol. 25. No. 2. 1982.
[4]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
[5]
H. Cohn, D. de Laat, and N. Leijenhorst, “Optimality of spherical codes via exact semidefinite programming bounds”, (2024) arXiv:2403.16874
[6]
P. G. Boyvalenkov, P. D. Dragnev, D. P. Hardin, E. B. Saff, and M. M. Stoyanova, “Universal upper and lower bounds on energy of spherical designs”, (2015) arXiv:1509.07837
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: kerdock_spherical

Cite as:
“Kerdock spherical code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/kerdock_spherical
BibTeX:
@incollection{eczoo_kerdock_spherical, title={Kerdock spherical code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/kerdock_spherical} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/kerdock_spherical

Cite as:

“Kerdock spherical code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/kerdock_spherical

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/spherical/q-ary/kerdock_spherical.yml.