Universally optimal spherical code[15] 

Description

A spherical code that (weakly) minimizes all completely monotonic potentials on the sphere for its cardinality. See [7][6; Sec. 12.4] for further discussion.

Parents

Children

  • 600-cell code — The 600-cell is universally optimal, but it is not a spherical sharp configuration [5].
  • Spherical sharp configuration — All sharp configurations are universally optimal [5], but not all universally optimal spherical codes are sharp configurations. The one known exception is the 600-cell.

Cousins

References

[1]
V. A. Yudin, “Minimum potential energy of a point system of charges”, Diskr. Mat., 4:2 (1992), 115–121; Discrete Math. Appl., 3:1 (1993), 75–81
[2]
A. Askikhmin, A. Barg, and S. Litsyn, “Estimates of the distance distribution of codes and designs”, IEEE Transactions on Information Theory 47, 1050 (2001) DOI
[3]
A. V. Kolushov et al., “Extremal dispositions of points on the sphere”, Analysis Mathematica 23, 25 (1997) DOI
[4]
E. B. Saff and A. B. J. Kuijlaars, “Distributing many points on a sphere”, The Mathematical Intelligencer 19, 5 (1997) DOI
[5]
H. Cohn and A. Kumar, “Universally optimal distribution of points on spheres”, Journal of the American Mathematical Society 20, 99 (2006) arXiv:math/0607446 DOI
[6]
P. Boyvalenkov, D. Danev, "Linear programming bounds." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
[7]
J. S. Brauchart and P. J. Grabner, “Distributing many points on spheres: Minimal energy and designs”, Journal of Complexity 31, 293 (2015) arXiv:1407.8282 DOI
[8]
H. Cohn et al., “TheD\({}_{\text{4}}\)Root System Is Not Universally Optimal”, Experimental Mathematics 16, 313 (2007) arXiv:math/0607447 DOI
[9]
P. G. Boyvalenkov et al., “Universal upper and lower bounds on energy of spherical designs”, (2015) arXiv:1509.07837
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: univ_opt_spherical

Cite as:
“Universally optimal spherical code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/univ_opt_spherical
BibTeX:
@incollection{eczoo_univ_opt_spherical, title={Universally optimal spherical code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/univ_opt_spherical} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/univ_opt_spherical

Cite as:

“Universally optimal spherical code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/univ_opt_spherical

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/spherical/sharp_config/univ_opt_spherical.yml.