[Jump to code hierarchy]

600-cell code[1]

Description

Spherical \((4,120,(3-\sqrt{5})/2)\) code whose codewords are the vertices of the 600-cell. See [2; Table 1][3; Table 3] for realizations of the 120 codewords. A realization in terms of quaternion coordinates yields the 120 elements of the binary icosahedral group \(2I\) [4].

Figure I: Projection of the coordinates of the \(600\)-cell.

Protection

The 600-cell code is unique up to equivalence, which follows from saturating the Boroczky bound [5,6].

Notes

The 600-cell code yields improved proofs of the Bell-Kochen-Specker (BKS) theorem [2].See post by J. Baez for more details.

Cousins

  • Dual polytope code— The 600-cell and 120-cell are dual to each other.
  • 120-cell code— Vertices of a 120-cell can be split up into vertices of five 600-cells [7,8]. The 600-cell and 120-cell are dual to each other.
  • Icosahedron code— A realization of the 600-cell in terms of quaternion coordinates yields the 120 elements of the binary icosahedral group \(2I\) [4].
  • 24-cell code— Vertices of a 600-cell can be split up into vertices of five 24-cells [2,7,9].

Primary Hierarchy

Parents
The 600-cell is universally optimal, but it is not a spherical sharp configuration [10].
The 600-cell code forms a spherical 11-design that is unique up to equivalence [6].
600-cell code

References

[1]
L. Kollros, “An Attempt to determine the twenty-seven Lines upon a Surface of the third Order, and to divide such Surfaces into Species in Reference to the Reality of the Lines upon the Surface”, Gesammelte Mathematische Abhandlungen 198 (1953) DOI
[2]
M. Waegell and P. K. Aravind, “Critical noncolorings of the 600-cell proving the Bell–Kochen–Specker theorem”, Journal of Physics A: Mathematical and Theoretical 43, 105304 (2010) arXiv:0911.2289 DOI
[3]
S. Mamone, G. Pileio, and M. H. Levitt, “Orientational Sampling Schemes Based on Four Dimensional Polytopes”, Symmetry 2, 1423 (2010) DOI
[4]
L. Rastanawi and G. Rote, “Towards a Geometric Understanding of the 4-Dimensional Point Groups”, (2022) arXiv:2205.04965
[5]
K. Boroczky, Packing of spheres in spaces of constant curvature, Acta Math. Acad. Sci. Hung. 32 (1978), 243–261.
[6]
P. Boyvalenkov and D. Danev, “Uniqueness of the 120-point spherical 11-design in four dimensions”, Archiv der Mathematik 77, 360 (2001) DOI
[7]
H. S. M. Coxeter. Regular polytopes. Courier Corporation, 1973.
[8]
M. Waegell and P. K. Aravind, “Parity Proofs of the Kochen–Specker Theorem Based on the 120-Cell”, Foundations of Physics 44, 1085 (2014) arXiv:1309.7530 DOI
[9]
Schoute, P. H. (1903). Mehrdimensionale Geometrie, Vol. 2 (Die Polytope).
[10]
H. Cohn and A. Kumar, “Universally optimal distribution of points on spheres”, Journal of the American Mathematical Society 20, 99 (2006) arXiv:math/0607446 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: 600cell

Cite as:
“600-cell code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/600cell
BibTeX:
@incollection{eczoo_600cell, title={600-cell code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/600cell} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/600cell

Cite as:

“600-cell code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/600cell

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/spherical/polytope/4d/600cell/600cell.yml.