600-cell code 


Spherical \((4,120,(3-\sqrt{5})/2)\) code whose codewords are the vertices of the 600-cell. See [1; Table 1][2; Table 3] for realizations of the 120 codewords. A realization in terms of quaternions yields the 120 elements of the binary icosahedral group \(2I\) [3].

Figure I: Projection of the coordinates of the \(600\)-cell.


The 600-cell code is unique up to equivalence, which follows from saturating the Boroczky bound [4,5].


Improved proofs of the Bell-Kochen-Specker (BKS) theorem [1].


See post by J. Baez for more details.



  • 24-cell code — Vertices of a 600-cell can be split up into vertices of five 24-cells [1,6,9].


M. Waegell and P. K. Aravind, “Critical noncolorings of the 600-cell proving the Bell–Kochen–Specker theorem”, Journal of Physics A: Mathematical and Theoretical 43, 105304 (2010) arXiv:0911.2289 DOI
S. Mamone, G. Pileio, and M. H. Levitt, “Orientational Sampling Schemes Based on Four Dimensional Polytopes”, Symmetry 2, 1423 (2010) DOI
L. Rastanawi and G. Rote, “Towards a Geometric Understanding of the 4-Dimensional Point Groups”, (2022) arXiv:2205.04965
K. Boroczky, Packing of spheres in spaces of constant curvature, Acta Math. Acad. Sci. Hung. 32 (1978), 243–261.
P. Boyvalenkov and D. Danev, “Uniqueness of the 120-point spherical 11-design in four dimensions”, Archiv der Mathematik 77, 360 (2001) DOI
H. S. M. Coxeter. Regular polytopes. Courier Corporation, 1973.
M. Waegell and P. K. Aravind, “Parity Proofs of the Kochen–Specker Theorem Based on the 120-Cell”, Foundations of Physics 44, 1085 (2014) arXiv:1309.7530 DOI
H. Cohn and A. Kumar, “Universally optimal distribution of points on spheres”, Journal of the American Mathematical Society 20, 99 (2006) arXiv:math/0607446 DOI
Schoute, P. H. (1903). Mehrdimensionale Geometrie, Vol. 2 (Die Polytope).
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)

edit on this site

Zoo Code ID: 600cell

Cite as:
“600-cell code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/600cell
  title={600-cell code},
  booktitle={The Error Correction Zoo},
  editor={Albert, Victor V. and Faist, Philippe},
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:

Cite as:

“600-cell code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/600cell

Github: https://github.com/errorcorrectionzoo/eczoo_data/tree/main/codes/classical/spherical/polytope/600cell/600cell.yml.