Icosahedron code 

Description

Spherical \((3,12,2-2/\sqrt{5})\) code whose codewords are the vertices of the icosahedron (alternatively, the centers of the faces of a dodecahedron, the icosahedron's dual polytope).

Protection

Optimal configuration of 12 points in 3D space [1; pg. 76]. Saturates the absolute bound for antipodal codes [1; pg. 314].

Notes

See post by J. Baez for more details.

Parents

Cousins

  • Golay code — The parity bits of the extended Golay code can be visualized to lie on the vertices of the icosahedron; see post by J. Baez for more details.
  • Dual polytope code — The icosahedron and dodecahedron are dual to each other.
  • Simplex spherical code — Vertices of a dodecahedron can be split up into vertices of five tetrahedra, which are simplex spherical codes for \(n=3\) [5].

References

[1]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
[2]
Andreev, Nikolay N. "An extremal property of the icosahedron." East J. Approx 2.4 (1996): 459-462.
[3]
H. Cohn and A. Kumar, “Universally optimal distribution of points on spheres”, Journal of the American Mathematical Society 20, 99 (2006) arXiv:math/0607446 DOI
[4]
P. Delsarte, J. M. Goethals, and J. J. Seidel, “Spherical codes and designs”, Geometriae Dedicata 6, 363 (1977) DOI
[5]
H. S. M. Coxeter. Regular polytopes. Courier Corporation, 1973.
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: icosahedron

Cite as:
“Icosahedron code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/icosahedron
BibTeX:
@incollection{eczoo_icosahedron, title={Icosahedron code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/icosahedron} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/icosahedron

Cite as:

“Icosahedron code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/icosahedron

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/spherical/polytope/icosahedron.yml.