Description
Seven-qubit PI code that realizes gates from the binary icosahedral group transversally. Can also be interpreted as a spin-\(7/2\) single-spin code. The codespace projection is a projection onto an irrep of the binary icosahedral group \(2I\).
In terms of Dicke states, the unnormalized logical states of one version [3] of this code are \begin{align} \begin{split} |0_{L}\rangle&\propto15|D_{0}^{7}\rangle+3\sqrt{35}|D_{4}^{7}\rangle\\&\quad+\sqrt{105}\;|D_{2}^{7}\rangle-3\sqrt{35}|D_{6}^{7}\rangle\,,\\|1_{L}\rangle&\propto X^{\otimes7}|0_{L}\rangle\,. \end{split} \tag*{(1)}\end{align}
Transversal Gates
Binary icosahedral group \(2I\) gates can be realized transversally [3].Cousins
- \([[7,1,3]]\) Steane code— The Pollatsek-Ruskai code can be continuously deformed to the Steane code [4].
- Icosahedron code— Binary icosahedral group \(2I\) gates can be realized transversally in the Pollatsek-Ruskai code [3].
Primary Hierarchy
References
- [1]
- H. Pollatsek and M. B. Ruskai, “Permutationally Invariant Codes for Quantum Error Correction”, (2004) arXiv:quant-ph/0304153
- [2]
- J. A. Gross, “Designing Codes around Interactions: The Case of a Spin”, Physical Review Letters 127, (2021) arXiv:2005.10910 DOI
- [3]
- E. Kubischta and I. Teixeira, “Family of Quantum Codes with Exotic Transversal Gates”, Physical Review Letters 131, (2023) arXiv:2305.07023 DOI
- [4]
- M. Du, C. Zhang, Y.-T. Poon, and B. Zeng, “Characterizing Quantum Codes via the Coefficients in Knill-Laflamme Conditions”, (2024) arXiv:2410.07983
- [5]
- A. Aydin, M. A. Alekseyev, and A. Barg, “A family of permutationally invariant quantum codes”, Quantum 8, 1321 (2024) arXiv:2310.05358 DOI
- [6]
- E. Kubischta and I. Teixeira, “Quantum Codes from Twisted Unitary t -Groups”, Physical Review Letters 133, (2024) arXiv:2402.01638 DOI
Page edit log
- Victor V. Albert (2023-05-12) — most recent
Cite as:
“\(((7,2,3))\) Pollatsek-Ruskai code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/icosahedral_permutation_invariant