Description
Block group-representation code realizing particular irreps of particular groups such that a distance of two is automatically guaranteed. Groups which admit irreps with this property are called twisted (unitary) \(1\)-groups and include the binary icosahedral group \(2I\), the \(\Sigma(360\phi)\) subgroup of \(SU(3)\), the family \(\{PSp(2b, 3), b \geq 1\}\), and the alternating groups \(A_{5,6}\). Groups whose irreps are images of the appropriate irreps of twisted \(1\)-groups also yield such properties, e.g., the binary tetrahedral group \(2T\) or qutrit Pauli group \(\Sigma(72\phi)\).
A \(((3,2,2))_3\) code can implement the qutrit Pauli group \(\Sigma(72\phi)\) transversally, a \(((6,3,2))\) code can implement \(A_5\) transversally, a \(((6,2,2))_3\) implements \(2T\) transversally, and a \(((6,5,2))_3\) code implements \(A_6\) transverally.
Transversal Gates
Parents
- Spin code
- Permutation-invariant (PI) code
- Group-representation code — Twisted \(1\)-group codes are group-representation codes with \(G\) being a twisted \(1\)-group.
- Small-distance block quantum code — All twisted \(1\)-group codes have a distance \(d \geq 2\).
Children
- \(((7,2,3))\) Pollatsek-Ruskai code — The \(((7,2,3))\) Pollatsek-Ruskai code admits a transversal representation of the twisted \(1\)-group \(2I\) [1].
- \(((5,3,2))_3\) qutrit code — The \(((5,3,2))_3\) qutrit code admits a transversal representation of the twisted \(1\)-group \(\Sigma(360\phi)\) [1].
Cousin
- \(t\)-design — Twisted unitary \(t\)-groups [1] generalize the idea of unitary \(t\)-groups [3,4], which are subgroups of the unitary group that form unitary \(t\)-designs.
References
- [1]
- E. Kubischta and I. Teixeira, “Quantum Codes from Twisted Unitary t -Groups”, Physical Review Letters 133, (2024) arXiv:2402.01638 DOI
- [2]
- E. Kubischta and I. Teixeira, “Quantum Codes and Irreducible Products of Characters”, (2024) arXiv:2403.08999
- [3]
- R. M. Guralnick and P. H. Tiep, “Decompositions of Small Tensor Powers and Larsen’s Conjecture”, (2005) arXiv:math/0502080
- [4]
- E. Bannai et al., “Unitary t-groups”, (2018) arXiv:1810.02507
Page edit log
- Victor V. Albert (2024-03-20) — most recent
Cite as:
“Twisted \(1\)-group code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/t_group
Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/spins/many_spin/t_group.yml.