[Jump to code hierarchy]

Twisted \(1\)-group code[1,2]

Description

Block group-representation code realizing particular irreps of particular groups such that a distance of two is automatically guaranteed. Groups which admit irreps with this property are called twisted (unitary) \(1\)-groups and include the binary icosahedral group \(2I\), the \(\Sigma(360\phi)\) subgroup of \(SU(3)\), the family \(\{PSp(2b, 3), b \geq 1\}\), and the alternating groups \(A_{5,6}\). Groups whose irreps are images of the appropriate irreps of twisted \(1\)-groups also yield such properties, e.g., the binary tetrahedral group \(2T\) or qutrit Pauli group \(\Sigma(72\phi)\).

A \(((3,2,2))_3\) code can implement the qutrit Pauli group \(\Sigma(72\phi)\) transversally, a \(((6,3,2))\) code can implement \(A_5\) transversally, a \(((6,2,2))_3\) implements \(2T\) transversally, and a \(((6,5,2))_3\) code implements \(A_6\) transversally.

Transversal Gates

All gates in the underlying twisted \(1\)-group. See [2; Table II] for other notable groups including the sporadic groups.

Cousin

  • \(t\)-design— Twisted unitary \(t\)-groups [1] generalize the idea of unitary \(t\)-groups [35], which are subgroups of the unitary group that form unitary \(t\)-designs.

Primary Hierarchy

Parents
Twisted \(1\)-group codes are group-representation codes with \(G\) being a twisted \(1\)-group.
All twisted \(1\)-group codes have a distance \(d \geq 2\).
Twisted \(1\)-group code
Children
The \(((7,2,3))\) Pollatsek-Ruskai code admits a transversal representation of the twisted \(1\)-group \(2I\) [1].
The \(((5,3,2))_3\) qutrit code admits a transversal representation of the twisted \(1\)-group \(\Sigma(360\phi)\) [1].

References

[1]
E. Kubischta and I. Teixeira, “Quantum Codes from Twisted Unitary t -Groups”, Physical Review Letters 133, (2024) arXiv:2402.01638 DOI
[2]
E. Kubischta and I. Teixeira, “Quantum Codes and Irreducible Products of Characters”, (2024) arXiv:2403.08999
[3]
R. M. Guralnick and P. H. Tiep, “Decompositions of Small Tensor Powers and Larsen’s Conjecture”, (2005) arXiv:math/0502080
[4]
A. Roy and A. J. Scott, “Unitary designs and codes”, Designs, Codes and Cryptography 53, 13 (2009) arXiv:0809.3813 DOI
[5]
E. Bannai, G. Navarro, N. Rizo, and P. H. Tiep, “Unitary t-groups”, (2018) arXiv:1810.02507
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: t_group

Cite as:
“Twisted \(1\)-group code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/t_group
BibTeX:
@incollection{eczoo_t_group, title={Twisted \(1\)-group code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/t_group} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/t_group

Cite as:

“Twisted \(1\)-group code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/t_group

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/spins/many_spin/t_group.yml.