[Jump to code hierarchy]

\([[7,1,3]]\) Steane code[1]

Description

A \([[7,1,3]]\) self-dual CSS code that is the smallest qubit CSS code to correct a single-qubit error [2]. The code is constructed using the classical binary \([7,4,3]\) Hamming code for protecting against both \(X\) and \(Z\) errors.

The code's stabilizer generator matrix blocks \(H_{X}\) and \(H_{Z}\) are both the parity-check matrix for the \([7,4,3]\) Hamming code, \begin{align} H_{X} = H_{Z} = \left(\begin{matrix} 0&0&0&1&1&1&1\\ 0&1&1&0&0&1&1\\ 1&0&1&0&1&0&1 \end{matrix}\right). \tag*{(1)}\end{align}

The stabilizer group for the Steane code has six generators, three \(X\)-type and three \(Z\)-type, which can be thought of as lying on the three trapezoids of the following tiling of the triangle. Figure I.

Figure I: Stabilizer generators of the Steane code.

The Steane code can also be thought of as a code on all corners of a cube except one [3,4], and the code''s encoder-respecting form is the graph of the full cube [5].

Logical codewords are \begin{align} \begin{split} |\overline{0}\rangle&=\frac{1}{\sqrt{8}}\Big(|0000000\rangle+|1010101\rangle+|0110011\rangle+|1100110\rangle\\&\,\,\,\,\,\,\,\,+|0001111\rangle+|1011010\rangle+|0111100\rangle+|1101001\rangle\Big)\\|\overline{1}\rangle&=\frac{1}{\sqrt{8}}\Big(|1111111\rangle+|0101010\rangle+|1001100\rangle+|0011001\rangle\\&\,\,\,\,\,\,\,\,+|1110000\rangle+|0100101\rangle+|1000011\rangle+|0010110\rangle\Big)~. \end{split} \tag*{(2)}\end{align}

The automorphism group of the code is \(PGL(3,2)\) [6]. It is one of sixteen distinct \([[7,1,3]]\) codes [7].

Protection

The Steane code is a distance 3 code. It detects errors on 2 qubits, corrects errors on 1 qubit.

Encoding

Nine CNOT and four Hadamard gates ([8], Fig. 10.14).Fault-tolerant logical zero and logical plus state preparation on all-to-all and 2D grid qubit connectivity [9].

Transversal Gates

The single-qubit Clifford group [10,11].

Gates

Fault-tolerant approximations of arbitrary single-qubit gates [12,13].Fault-tolerant logical zero and magic state preparation [14]. Magic-state preparation converts unbiased noise into biased noise [15].Pieceable fault-tolerant CCZ gate [16].

Decoding

Shor error correction fidelity calculation [17,18].

Fault Tolerance

A fault-tolerant universal gate set can be done via code switching between the Steane code and the \([[15,1,3]]\) code [1922].A fault-tolerant universal gate set can be done via code switching between the Steane code and the \([[10,1,2]]\) code [23].Fault-tolerant logical zero and magic state preparation [14]. Magic-state preparation converts unbiased noise into biased noise [15].Fault-tolerant logical zero and logical plus state preparation on all-to-all and 2D grid qubit connectivity [9].Pieceable fault-tolerant CCZ gate [16].Syndrome measurement can be done with ancillary flag qubits [24,25] or with no extra qubits [26]. The depth of syndrome extraction circuits can be lowered by using past syndrome values [27].

Realizations

Trapped-ion devices: seven-qubit device in Blatt group [28]. Ten-qubit QCCD device by Quantinuum [29] realizing repeated syndrome extraction, real-time look-up-table decoding (yielding lower logical SPAM error rate than physical SPAM), and non-fault-tolerant magic-state distillation (see APS Physics Synopsis [30]). Fault-tolerant universal two-qubit gate set using T injection by Monz group [31]. Logical CNOT gate and Bell-pair creation between two logical qubits (yielding a logical fidelity higher than physical), including rounds of correction and fault-tolerant primitives such as flag qubits and pieceable fault tolerance, on a 20-qubit device by Quantinuum [32]; logical fidelity interval of the combined preparation-CNOT-measurement procedure was higher than that of the unencoded physical qubits. Multiple rounds of Steane error correction [33]. Fault-tolerant universal gate set via code switching between the Steane code and the \([[10,1,2]]\) code [23]. Post-selected fault-tolerant logical Bell-state preparation with logical error rates at least 10 times lower than physical rate on a device by Quantinuum [34]. The quantum Fourier transform on three code blocks [35]. Fault-tolerant transversal and lattice-surgery state teleportation protocols as well as Knill error correction [36]. Rains shadow enumerators have been measured [37].Rydberg atom arrays: Lukin group [38]; ten logical qubits, transversal CNOT gate performed, logical ten-qubit GHZ state initialized with break-even fidelity, and fault-tolerant logical two-qubit GHZ state initialized [39].

Notes

The Steane code can be used for entanglement purification [40].

Cousins

Primary Hierarchy

Parents
Steane code is a 2D color code defined on a seven-qubit patch of the 6.6.6 tiling.
There exists a set of stabilizer generators for the Steane code that make it a QDS code [55].
The Steane code is the \(m=1\) member of the \([[2^{2m}+2^{m}+1,1,>2^{m}]]\) PG-QLDPC code family that is constructed from codes corresponding to lines and affine charts in \(PG(2,2^m)\) via the CSS construction [56; Def. 4.9].
The Steane code is a group-representation code with \(G\) being the \(2O\) subgroup of \(SU(2)\) [57].
The concatenated Steane code at level \(m=1\) is the Steane code.
The Steane code is the smallest heptagon holographic code. The encoding of more general heptagon holographic codes is a holographic tensor network consisting of the encoding isometry for the Steane code, which is a planar-perfect tensor.
\([[7,1,3]]\) Steane code

References

[1]
“Multiple-particle interference and quantum error correction”, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 452, 2551 (1996) DOI
[2]
B. Shaw, M. M. Wilde, O. Oreshkov, I. Kremsky, and D. A. Lidar, “Encoding one logical qubit into six physical qubits”, Physical Review A 78, (2008) arXiv:0803.1495 DOI
[3]
R. Raussendorf, “Key ideas in quantum error correction”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, 4541 (2012) DOI
[4]
R. Duncan and M. Lucas, “Verifying the Steane code with Quantomatic”, Electronic Proceedings in Theoretical Computer Science 171, 33 (2014) arXiv:1306.4532 DOI
[5]
A. B. Khesin, J. Z. Lu, and P. W. Shor, “Universal graph representation of stabilizer codes”, (2024) arXiv:2411.14448
[6]
H. Hao, “Investigations on Automorphism Groups of Quantum Stabilizer Codes”, (2021) arXiv:2109.12735
[7]
S. Yu, Q. Chen, and C. H. Oh, “Graphical Quantum Error-Correcting Codes”, (2007) arXiv:0709.1780
[8]
M. Nakahara, “Quantum Computing”, (2008) DOI
[9]
R. Zen, J. Olle, L. Colmenarez, M. Puviani, M. Müller, and F. Marquardt, “Quantum Circuit Discovery for Fault-Tolerant Logical State Preparation with Reinforcement Learning”, (2024) arXiv:2402.17761
[10]
P. W. Shor, “Fault-tolerant quantum computation”, (1997) arXiv:quant-ph/9605011
[11]
B. Zeng, A. Cross, and I. L. Chuang, “Transversality versus Universality for Additive Quantum Codes”, (2007) arXiv:0706.1382
[12]
A. G. Fowler, “Constructing arbitrary Steane code single logical qubit fault-tolerant gates”, (2010) arXiv:quant-ph/0411206
[13]
A. G. Fowler, “Towards Large-Scale Quantum Computation”, (2005) arXiv:quant-ph/0506126
[14]
H. Goto, “Minimizing resource overheads for fault-tolerant preparation of encoded states of the Steane code”, Scientific Reports 6, (2016) DOI
[15]
N. Fazio, R. Harper, and S. Bartlett, “Logical Noise Bias in Magic State Injection”, (2024) arXiv:2401.10982
[16]
T. J. Yoder, R. Takagi, and I. L. Chuang, “Universal Fault-Tolerant Gates on Concatenated Stabilizer Codes”, Physical Review X 6, (2016) arXiv:1603.03948 DOI
[17]
Y. S. Weinstein, “Fidelity of an encoded [7,1,3] logical zero”, Physical Review A 84, (2011) arXiv:1101.1950 DOI
[18]
S. D. Buchbinder, C. L. Huang, and Y. S. Weinstein, “Encoding an Arbitrary State in a [7,1,3] Quantum Error Correction Code”, (2011) arXiv:1109.1714
[19]
A. Paetznick and B. W. Reichardt, “Universal Fault-Tolerant Quantum Computation with Only Transversal Gates and Error Correction”, Physical Review Letters 111, (2013) arXiv:1304.3709 DOI
[20]
J. T. Anderson, G. Duclos-Cianci, and D. Poulin, “Fault-Tolerant Conversion between the Steane and Reed-Muller Quantum Codes”, Physical Review Letters 113, (2014) arXiv:1403.2734 DOI
[21]
D.-X. Quan, L.-L. Zhu, C.-X. Pei, and B. C. Sanders, “Fault-tolerant conversion between adjacent Reed–Muller quantum codes based on gauge fixing”, Journal of Physics A: Mathematical and Theoretical 51, 115305 (2018) arXiv:1703.03860 DOI
[22]
D. Banfield and A. Kay, “Implementing Logical Operators using Code Rewiring”, (2023) arXiv:2210.14074
[23]
I. Pogorelov, F. Butt, L. Postler, C. D. Marciniak, P. Schindler, M. Müller, and T. Monz, “Experimental fault-tolerant code switching”, (2024) arXiv:2403.13732
[24]
T. J. Yoder and I. H. Kim, “The surface code with a twist”, Quantum 1, 2 (2017) arXiv:1612.04795 DOI
[25]
R. Chao and B. W. Reichardt, “Quantum Error Correction with Only Two Extra Qubits”, Physical Review Letters 121, (2018) arXiv:1705.02329 DOI
[26]
B. W. Reichardt, “Fault-tolerant quantum error correction for Steane’s seven-qubit color code with few or no extra qubits”, Quantum Science and Technology 6, 015007 (2020) DOI
[27]
D. Bhatnagar, M. Steinberg, D. Elkouss, C. G. Almudever, and S. Feld, “Low-Depth Flag-Style Syndrome Extraction for Small Quantum Error-Correction Codes”, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) 63 (2023) arXiv:2305.00784 DOI
[28]
D. Nigg, M. Müller, E. A. Martinez, P. Schindler, M. Hennrich, T. Monz, M. A. Martin-Delgado, and R. Blatt, “Quantum computations on a topologically encoded qubit”, Science 345, 302 (2014) arXiv:1403.5426 DOI
[29]
C. Ryan-Anderson et al., “Realization of real-time fault-tolerant quantum error correction”, (2021) arXiv:2107.07505
[30]
P. Ball, “Real-Time Error Correction for Quantum Computing”, Physics 14, (2021) DOI
[31]
L. Postler et al., “Demonstration of fault-tolerant universal quantum gate operations”, Nature 605, 675 (2022) arXiv:2111.12654 DOI
[32]
C. Ryan-Anderson et al., “Implementing Fault-tolerant Entangling Gates on the Five-qubit Code and the Color Code”, (2022) arXiv:2208.01863
[33]
L. Postler, F. Butt, I. Pogorelov, C. D. Marciniak, S. Heußen, R. Blatt, P. Schindler, M. Rispler, M. Müller, and T. Monz, “Demonstration of Fault-Tolerant Steane Quantum Error Correction”, PRX Quantum 5, (2024) arXiv:2312.09745 DOI
[34]
A. Paetznick et al., “Demonstration of logical qubits and repeated error correction with better-than-physical error rates”, (2024) arXiv:2404.02280
[35]
K. Mayer et al., “Benchmarking logical three-qubit quantum Fourier transform encoded in the Steane code on a trapped-ion quantum computer”, (2024) arXiv:2404.08616
[36]
C. Ryan-Anderson et al., “High-fidelity and Fault-tolerant Teleportation of a Logical Qubit using Transversal Gates and Lattice Surgery on a Trapped-ion Quantum Computer”, (2024) arXiv:2404.16728
[37]
D. Miller et al., “Experimental measurement and a physical interpretation of quantum shadow enumerators”, (2024) arXiv:2408.16914
[38]
D. Bluvstein et al., “A quantum processor based on coherent transport of entangled atom arrays”, Nature 604, 451 (2022) arXiv:2112.03923 DOI
[39]
D. Bluvstein et al., “Logical quantum processor based on reconfigurable atom arrays”, Nature 626, 58 (2023) arXiv:2312.03982 DOI
[40]
K. Fujii and K. Yamamoto, “Entanglement purification with double selection”, Physical Review A 80, (2009) arXiv:0811.2639 DOI
[41]
A. A. Kovalev, I. Dumer, and L. P. Pryadko, “Design of additive quantum codes via the code-word-stabilized framework”, Physical Review A 84, (2011) arXiv:1108.5490 DOI
[42]
M. Grassl, A. Klappenecker, and M. Rotteler, “Graphs, quadratic forms, and quantum codes”, Proceedings IEEE International Symposium on Information Theory, 45 arXiv:quant-ph/0703112 DOI
[43]
A. P. Lund, T. C. Ralph, and H. L. Haselgrove, “Fault-Tolerant Linear Optical Quantum Computing with Small-Amplitude Coherent States”, Physical Review Letters 100, (2008) arXiv:0707.0327 DOI
[44]
C. Cao and B. Lackey, “Quantum Lego: Building Quantum Error Correction Codes from Tensor Networks”, PRX Quantum 3, (2022) arXiv:2109.08158 DOI
[45]
M. Du, C. Zhang, Y.-T. Poon, and B. Zeng, “Characterizing Quantum Codes via the Coefficients in Knill-Laflamme Conditions”, (2024) arXiv:2410.07983
[46]
M. Vasmer and A. Kubica, “Morphing Quantum Codes”, PRX Quantum 3, (2022) arXiv:2112.01446 DOI
[47]
J. Hu, Q. Liang, and R. Calderbank, “Divisible Codes for Quantum Computation”, (2022) arXiv:2204.13176
[48]
Z. Li, I. Kim, and P. Hayden, “Concatenation Schemes for Topological Fault-tolerant Quantum Error Correction”, Quantum 7, 1089 (2023) arXiv:2209.09390 DOI
[49]
S. Bravyi and A. Cross, “Doubled Color Codes”, (2015) arXiv:1509.03239
[50]
F. Butt, S. Heußen, M. Rispler, and M. Müller, “Fault-Tolerant Code-Switching Protocols for Near-Term Quantum Processors”, PRX Quantum 5, (2024) arXiv:2306.17686 DOI
[51]
T. Jochym-O’Connor and R. Laflamme, “Using Concatenated Quantum Codes for Universal Fault-Tolerant Quantum Gates”, Physical Review Letters 112, (2014) arXiv:1309.3310 DOI
[52]
T. Jochym-O’Connor, A. Kubica, and T. J. Yoder, “Disjointness of Stabilizer Codes and Limitations on Fault-Tolerant Logical Gates”, Physical Review X 8, (2018) arXiv:1710.07256 DOI
[53]
C.-Y. Lai and C.-C. Lu, “A Construction of Quantum Stabilizer Codes Based on Syndrome Assignment by Classical Parity-Check Matrices”, IEEE Transactions on Information Theory 57, 7163 (2011) arXiv:0712.0103 DOI
[54]
A. Ashikhmin, C.-Y. Lai, and T. A. Brun, “Quantum Data-Syndrome Codes”, IEEE Journal on Selected Areas in Communications 38, 449 (2020) arXiv:1907.01393 DOI
[55]
Y. Fujiwara, “Ability of stabilizer quantum error correction to protect itself from its own imperfection”, Physical Review A 90, (2014) arXiv:1409.2559 DOI
[56]
B. Audoux and A. Couvreur, “On tensor products of CSS Codes”, (2018) arXiv:1512.07081
[57]
A. Denys and A. Leverrier, “Quantum error-correcting codes with a covariant encoding”, (2024) arXiv:2306.11621
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: steane

Cite as:
\([[7,1,3]]\) Steane code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/steane
BibTeX:
@incollection{eczoo_steane, title={\([[7,1,3]]\) Steane code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/steane} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/steane

Cite as:

\([[7,1,3]]\) Steane code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/steane

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/small_distance/small/7/steane/steane.yml.