\([[7,1,3]]\) Steane code[1]
Description
A \([[7,1,3]]\) self-dual CSS code that is the smallest qubit CSS code to correct a single-qubit error [2]. The code is constructed using the classical binary \([7,4,3]\) Hamming code for protecting against both \(X\) and \(Z\) errors.
The code's stabilizer generator matrix blocks \(H_{X}\) and \(H_{Z}\) are both the parity-check matrix for the \([7,4,3]\) Hamming code, \begin{align} H_{X} = H_{Z} = \left(\begin{matrix} 0&0&0&1&1&1&1\\ 0&1&1&0&0&1&1\\ 1&0&1&0&1&0&1 \end{matrix}\right). \tag*{(1)}\end{align}
The stabilizer group for the Steane code has six generators, three \(X\)-type and three \(Z\)-type, which can be thought of as lying on the three trapezoids of the following tiling of the triangle. Figure I.
The Steane code can also be thought of as a code on all corners of a cube except one [3,4], and the code''s encoder-respecting form is the graph of the full cube [5].
Logical codewords are \begin{align} \begin{split} |\overline{0}\rangle&=\frac{1}{\sqrt{8}}\Big(|0000000\rangle+|1010101\rangle+|0110011\rangle+|1100110\rangle\\&\,\,\,\,\,\,\,\,+|0001111\rangle+|1011010\rangle+|0111100\rangle+|1101001\rangle\Big)\\|\overline{1}\rangle&=\frac{1}{\sqrt{8}}\Big(|1111111\rangle+|0101010\rangle+|1001100\rangle+|0011001\rangle\\&\,\,\,\,\,\,\,\,+|1110000\rangle+|0100101\rangle+|1000011\rangle+|0010110\rangle\Big)~. \end{split} \tag*{(2)}\end{align}
The automorphism group of the code is \(PGL(3,2)\) [6]. It is one of sixteen distinct \([[7,1,3]]\) codes [7].
Protection
The Steane code is a distance 3 code. It detects errors on 2 qubits, corrects errors on 1 qubit.Encoding
Nine CNOT and four Hadamard gates ([8], Fig. 10.14).Fault-tolerant logical zero and logical plus state preparation on all-to-all and 2D grid qubit connectivity [9].Transversal Gates
The single-qubit Clifford group [10,11].Gates
Fault-tolerant approximations of arbitrary single-qubit gates [12,13].Fault-tolerant logical zero and magic state preparation [14]. Magic-state preparation converts unbiased noise into biased noise [15].Pieceable fault-tolerant CCZ gate [16].Fault Tolerance
A fault-tolerant universal gate set can be done via code switching between the Steane code and the \([[15,1,3]]\) code [19–22].A fault-tolerant universal gate set can be done via code switching between the Steane code and the \([[10,1,2]]\) code [23].Fault-tolerant logical zero and magic state preparation [14]. Magic-state preparation converts unbiased noise into biased noise [15].Fault-tolerant logical zero and logical plus state preparation on all-to-all and 2D grid qubit connectivity [9].Pieceable fault-tolerant CCZ gate [16].Syndrome measurement can be done with ancillary flag qubits [24,25] or with no extra qubits [26]. The depth of syndrome extraction circuits can be lowered by using past syndrome values [27].Realizations
Trapped-ion devices: seven-qubit device in Blatt group [28]. Ten-qubit QCCD device by Quantinuum [29] realizing repeated syndrome extraction, real-time look-up-table decoding (yielding lower logical SPAM error rate than physical SPAM), and non-fault-tolerant magic-state distillation (see APS Physics Synopsis [30]). Fault-tolerant universal two-qubit gate set using T injection by Monz group [31]. Logical CNOT gate and Bell-pair creation between two logical qubits (yielding a logical fidelity higher than physical), including rounds of correction and fault-tolerant primitives such as flag qubits and pieceable fault tolerance, on a 20-qubit device by Quantinuum [32]; logical fidelity interval of the combined preparation-CNOT-measurement procedure was higher than that of the unencoded physical qubits. Multiple rounds of Steane error correction [33]. Fault-tolerant universal gate set via code switching between the Steane code and the \([[10,1,2]]\) code [23]. Post-selected fault-tolerant logical Bell-state preparation with logical error rates at least 10 times lower than physical rate on a device by Quantinuum [34]. The quantum Fourier transform on three code blocks [35]. Fault-tolerant transversal and lattice-surgery state teleportation protocols as well as Knill error correction [36]. Rains shadow enumerators have been measured [37].Rydberg atom arrays: Lukin group [38]; ten logical qubits, transversal CNOT gate performed, logical ten-qubit GHZ state initialized with break-even fidelity, and fault-tolerant logical two-qubit GHZ state initialized [39].Notes
The Steane code can be used for entanglement purification [40].Cousins
- Cyclic quantum code— The Steane code is equivalent to a cyclic code via qubit permutations [41; Exam. 1].
- Codeword stabilized (CWS) code— The Steane code is equivalent via a single-qubit Clifford unitary to a CWS code for a particular graph and classical code [41; Exam. 4].
- Graph quantum code— Four non-isomorphic graphs yield graph quantum codes that are equivalent to the Steane code under a single-qubit-Clifford circuit [42].
- EA qubit stabilizer code— The Steane code is globally equivalent to a \([[6,1,3;1]]\) code, which is the smallest EA CSS code with that distance [2].
- \([7,4,3]\) Hamming code— The Steane code is constructed from the \([7,4,3]\) classical Hamming code via the CSS construction.
- Concatenated cat code— Two-component cat codes concatenated with Steane and Golay codes are estimated to be fault tolerant against photon loss noise with rate \(\eta < 5\times 10^{-4}\) provided that \(\alpha > 1.2\) [43].
- Tensor-network code— The Steane code can be built from two \([[4,2,2]]\) codes in the quantum Lego code framework [44].
- \(((7,2,3))\) Pollatsek-Ruskai code— The Pollatsek-Ruskai code can be continuously deformed to the Steane code [45].
- \([[m 2^m / (m+1), 2^m / (m+1)]]\) Khesin-Lu-Shor code— The encoder-respecting form of both the Steane and Khesin-Lu-Shor codes is the graph of a hypercube [5].
- \([[10,1,2]]\) CSS code— A fault-tolerant universal gate set can be done via code switching between the Steane code and the \([[10,1,2]]\) code [23].
- \([[4,2,2]]\) Four-qubit code— The Steane code can be built from two \([[4,2,2]]\) codes in the quantum Lego code framework [44].
- \([[5,1,2]]\) rotated surface code— The \([[5,1,2]]\) rotated surface code can be obtained by morphing the Steane code [46].
- Quantum divisible code— A fault-tolerant \(T\) gate on the Steane code can be obtained by concatenating with particular quantum divisible codes [47].
- Raussendorf-Bravyi-Harrington (RBH) cluster-state code— Concatenation of the RBH code with small codes such as the \([[2,1,1]]\) repetition code, \([[4,1,1,2]]\) subsystem code, or Steane code can improve thresholds [48].
- \([[15,1,3]]\) quantum Reed-Muller code— The \([[15,1,3]]\) code can be viewed as a (gauge-fixed) doubled color code obtained from the Steane code via the doubling transformation [49]. A fault-tolerant universal gate set can be done via code switching between the Steane code and the \([[15,1,3]]\) code [19–22,50]. An \([[105,1,3]]\) alternative concatenation of the \([[15,1,3]]\) and Steane codes allows for a universal gate set consisting of gates that are close to transversal [51,52].
Member of code lists
- 2D stabilizer codes
- Color code and friends
- Concatenated quantum codes and friends
- Hamiltonian-based codes
- Holographic codes
- Quantum codes
- Quantum codes based on homological products
- Quantum codes with fault-tolerant gadgets
- Quantum codes with notable decoders
- Quantum codes with transversal gates
- Quantum CSS codes
- Quantum LDPC codes
- Quantum Reed-Muller codes and friends
- Realized quantum codes
- Small-distance quantum codes and friends
- Stabilizer codes
- Surface code and friends
- Topological codes
Primary Hierarchy
References
- [1]
- “Multiple-particle interference and quantum error correction”, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 452, 2551 (1996) DOI
- [2]
- B. Shaw, M. M. Wilde, O. Oreshkov, I. Kremsky, and D. A. Lidar, “Encoding one logical qubit into six physical qubits”, Physical Review A 78, (2008) arXiv:0803.1495 DOI
- [3]
- R. Raussendorf, “Key ideas in quantum error correction”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, 4541 (2012) DOI
- [4]
- R. Duncan and M. Lucas, “Verifying the Steane code with Quantomatic”, Electronic Proceedings in Theoretical Computer Science 171, 33 (2014) arXiv:1306.4532 DOI
- [5]
- A. B. Khesin, J. Z. Lu, and P. W. Shor, “Universal graph representation of stabilizer codes”, (2024) arXiv:2411.14448
- [6]
- H. Hao, “Investigations on Automorphism Groups of Quantum Stabilizer Codes”, (2021) arXiv:2109.12735
- [7]
- S. Yu, Q. Chen, and C. H. Oh, “Graphical Quantum Error-Correcting Codes”, (2007) arXiv:0709.1780
- [8]
- M. Nakahara, “Quantum Computing”, (2008) DOI
- [9]
- R. Zen, J. Olle, L. Colmenarez, M. Puviani, M. Müller, and F. Marquardt, “Quantum Circuit Discovery for Fault-Tolerant Logical State Preparation with Reinforcement Learning”, (2024) arXiv:2402.17761
- [10]
- P. W. Shor, “Fault-tolerant quantum computation”, (1997) arXiv:quant-ph/9605011
- [11]
- B. Zeng, A. Cross, and I. L. Chuang, “Transversality versus Universality for Additive Quantum Codes”, (2007) arXiv:0706.1382
- [12]
- A. G. Fowler, “Constructing arbitrary Steane code single logical qubit fault-tolerant gates”, (2010) arXiv:quant-ph/0411206
- [13]
- A. G. Fowler, “Towards Large-Scale Quantum Computation”, (2005) arXiv:quant-ph/0506126
- [14]
- H. Goto, “Minimizing resource overheads for fault-tolerant preparation of encoded states of the Steane code”, Scientific Reports 6, (2016) DOI
- [15]
- N. Fazio, R. Harper, and S. Bartlett, “Logical Noise Bias in Magic State Injection”, (2024) arXiv:2401.10982
- [16]
- T. J. Yoder, R. Takagi, and I. L. Chuang, “Universal Fault-Tolerant Gates on Concatenated Stabilizer Codes”, Physical Review X 6, (2016) arXiv:1603.03948 DOI
- [17]
- Y. S. Weinstein, “Fidelity of an encoded [7,1,3] logical zero”, Physical Review A 84, (2011) arXiv:1101.1950 DOI
- [18]
- S. D. Buchbinder, C. L. Huang, and Y. S. Weinstein, “Encoding an Arbitrary State in a [7,1,3] Quantum Error Correction Code”, (2011) arXiv:1109.1714
- [19]
- A. Paetznick and B. W. Reichardt, “Universal Fault-Tolerant Quantum Computation with Only Transversal Gates and Error Correction”, Physical Review Letters 111, (2013) arXiv:1304.3709 DOI
- [20]
- J. T. Anderson, G. Duclos-Cianci, and D. Poulin, “Fault-Tolerant Conversion between the Steane and Reed-Muller Quantum Codes”, Physical Review Letters 113, (2014) arXiv:1403.2734 DOI
- [21]
- D.-X. Quan, L.-L. Zhu, C.-X. Pei, and B. C. Sanders, “Fault-tolerant conversion between adjacent Reed–Muller quantum codes based on gauge fixing”, Journal of Physics A: Mathematical and Theoretical 51, 115305 (2018) arXiv:1703.03860 DOI
- [22]
- D. Banfield and A. Kay, “Implementing Logical Operators using Code Rewiring”, (2023) arXiv:2210.14074
- [23]
- I. Pogorelov, F. Butt, L. Postler, C. D. Marciniak, P. Schindler, M. Müller, and T. Monz, “Experimental fault-tolerant code switching”, (2024) arXiv:2403.13732
- [24]
- T. J. Yoder and I. H. Kim, “The surface code with a twist”, Quantum 1, 2 (2017) arXiv:1612.04795 DOI
- [25]
- R. Chao and B. W. Reichardt, “Quantum Error Correction with Only Two Extra Qubits”, Physical Review Letters 121, (2018) arXiv:1705.02329 DOI
- [26]
- B. W. Reichardt, “Fault-tolerant quantum error correction for Steane’s seven-qubit color code with few or no extra qubits”, Quantum Science and Technology 6, 015007 (2020) DOI
- [27]
- D. Bhatnagar, M. Steinberg, D. Elkouss, C. G. Almudever, and S. Feld, “Low-Depth Flag-Style Syndrome Extraction for Small Quantum Error-Correction Codes”, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) 63 (2023) arXiv:2305.00784 DOI
- [28]
- D. Nigg, M. Müller, E. A. Martinez, P. Schindler, M. Hennrich, T. Monz, M. A. Martin-Delgado, and R. Blatt, “Quantum computations on a topologically encoded qubit”, Science 345, 302 (2014) arXiv:1403.5426 DOI
- [29]
- C. Ryan-Anderson et al., “Realization of real-time fault-tolerant quantum error correction”, (2021) arXiv:2107.07505
- [30]
- P. Ball, “Real-Time Error Correction for Quantum Computing”, Physics 14, (2021) DOI
- [31]
- L. Postler et al., “Demonstration of fault-tolerant universal quantum gate operations”, Nature 605, 675 (2022) arXiv:2111.12654 DOI
- [32]
- C. Ryan-Anderson et al., “Implementing Fault-tolerant Entangling Gates on the Five-qubit Code and the Color Code”, (2022) arXiv:2208.01863
- [33]
- L. Postler, F. Butt, I. Pogorelov, C. D. Marciniak, S. Heußen, R. Blatt, P. Schindler, M. Rispler, M. Müller, and T. Monz, “Demonstration of Fault-Tolerant Steane Quantum Error Correction”, PRX Quantum 5, (2024) arXiv:2312.09745 DOI
- [34]
- A. Paetznick et al., “Demonstration of logical qubits and repeated error correction with better-than-physical error rates”, (2024) arXiv:2404.02280
- [35]
- K. Mayer et al., “Benchmarking logical three-qubit quantum Fourier transform encoded in the Steane code on a trapped-ion quantum computer”, (2024) arXiv:2404.08616
- [36]
- C. Ryan-Anderson et al., “High-fidelity and Fault-tolerant Teleportation of a Logical Qubit using Transversal Gates and Lattice Surgery on a Trapped-ion Quantum Computer”, (2024) arXiv:2404.16728
- [37]
- D. Miller et al., “Experimental measurement and a physical interpretation of quantum shadow enumerators”, (2024) arXiv:2408.16914
- [38]
- D. Bluvstein et al., “A quantum processor based on coherent transport of entangled atom arrays”, Nature 604, 451 (2022) arXiv:2112.03923 DOI
- [39]
- D. Bluvstein et al., “Logical quantum processor based on reconfigurable atom arrays”, Nature 626, 58 (2023) arXiv:2312.03982 DOI
- [40]
- K. Fujii and K. Yamamoto, “Entanglement purification with double selection”, Physical Review A 80, (2009) arXiv:0811.2639 DOI
- [41]
- A. A. Kovalev, I. Dumer, and L. P. Pryadko, “Design of additive quantum codes via the code-word-stabilized framework”, Physical Review A 84, (2011) arXiv:1108.5490 DOI
- [42]
- M. Grassl, A. Klappenecker, and M. Rotteler, “Graphs, quadratic forms, and quantum codes”, Proceedings IEEE International Symposium on Information Theory, 45 arXiv:quant-ph/0703112 DOI
- [43]
- A. P. Lund, T. C. Ralph, and H. L. Haselgrove, “Fault-Tolerant Linear Optical Quantum Computing with Small-Amplitude Coherent States”, Physical Review Letters 100, (2008) arXiv:0707.0327 DOI
- [44]
- C. Cao and B. Lackey, “Quantum Lego: Building Quantum Error Correction Codes from Tensor Networks”, PRX Quantum 3, (2022) arXiv:2109.08158 DOI
- [45]
- M. Du, C. Zhang, Y.-T. Poon, and B. Zeng, “Characterizing Quantum Codes via the Coefficients in Knill-Laflamme Conditions”, (2024) arXiv:2410.07983
- [46]
- M. Vasmer and A. Kubica, “Morphing Quantum Codes”, PRX Quantum 3, (2022) arXiv:2112.01446 DOI
- [47]
- J. Hu, Q. Liang, and R. Calderbank, “Divisible Codes for Quantum Computation”, (2022) arXiv:2204.13176
- [48]
- Z. Li, I. Kim, and P. Hayden, “Concatenation Schemes for Topological Fault-tolerant Quantum Error Correction”, Quantum 7, 1089 (2023) arXiv:2209.09390 DOI
- [49]
- S. Bravyi and A. Cross, “Doubled Color Codes”, (2015) arXiv:1509.03239
- [50]
- F. Butt, S. Heußen, M. Rispler, and M. Müller, “Fault-Tolerant Code-Switching Protocols for Near-Term Quantum Processors”, PRX Quantum 5, (2024) arXiv:2306.17686 DOI
- [51]
- T. Jochym-O’Connor and R. Laflamme, “Using Concatenated Quantum Codes for Universal Fault-Tolerant Quantum Gates”, Physical Review Letters 112, (2014) arXiv:1309.3310 DOI
- [52]
- T. Jochym-O’Connor, A. Kubica, and T. J. Yoder, “Disjointness of Stabilizer Codes and Limitations on Fault-Tolerant Logical Gates”, Physical Review X 8, (2018) arXiv:1710.07256 DOI
- [53]
- C.-Y. Lai and C.-C. Lu, “A Construction of Quantum Stabilizer Codes Based on Syndrome Assignment by Classical Parity-Check Matrices”, IEEE Transactions on Information Theory 57, 7163 (2011) arXiv:0712.0103 DOI
- [54]
- A. Ashikhmin, C.-Y. Lai, and T. A. Brun, “Quantum Data-Syndrome Codes”, IEEE Journal on Selected Areas in Communications 38, 449 (2020) arXiv:1907.01393 DOI
- [55]
- Y. Fujiwara, “Ability of stabilizer quantum error correction to protect itself from its own imperfection”, Physical Review A 90, (2014) arXiv:1409.2559 DOI
- [56]
- B. Audoux and A. Couvreur, “On tensor products of CSS Codes”, (2018) arXiv:1512.07081
- [57]
- A. Denys and A. Leverrier, “Quantum error-correcting codes with a covariant encoding”, (2024) arXiv:2306.11621
Page edit log
- Remmy Zen (2024-07-15) — most recent
- Eric Huang (2024-03-18)
- Victor V. Albert (2022-08-04)
- Victor V. Albert (2022-03-14)
- Joseph T. Iosue (2021-12-19)
Cite as:
“\([[7,1,3]]\) Steane code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/steane