\([[7,1,3]]\) Steane code[1]
Description
A \([[7,1,3]]\) self-dual CSS code that is the smallest qubit CSS code to correct a single-qubit error [2]. The code is constructed using the classical binary \([7,4,3]\) Hamming code for protecting against both \(X\) and \(Z\) errors.
The code's stabilizer generator matrix blocks \(H_{X}\) and \(H_{Z}\) are both the parity-check matrix for the \([7,4,3]\) Hamming code, \begin{align} H_{X} = H_{Z} = \left(\begin{matrix} 0&0&0&1&1&1&1\\ 0&1&1&0&0&1&1\\ 1&0&1&0&1&0&1 \end{matrix}\right). \tag*{(1)}\end{align}
The stabilizer group for the Steane code has six generators, three \(X\)-type and three \(Z\)-type, which can be thought of as lying on the three trapezoids of the following tiling of the triangle. Figure I.
The Steane code can also be thought of as a code on all corners of a cube except one [3].
Logical codewords are \begin{align} \begin{split} |\overline{0}\rangle&=\frac{1}{\sqrt{8}}\Big(|0000000\rangle+|1010101\rangle+|0110011\rangle+|1100110\rangle\\&\,\,\,\,\,\,\,\,+|0001111\rangle+|1011010\rangle+|0111100\rangle+|1101001\rangle\Big)\\|\overline{1}\rangle&=\frac{1}{\sqrt{8}}\Big(|1111111\rangle+|0101010\rangle+|1001100\rangle+|0011001\rangle\\&\,\,\,\,\,\,\,\,+|1110000\rangle+|0100101\rangle+|1000011\rangle+|0010110\rangle\Big)~. \end{split} \tag*{(2)}\end{align}
The automorphism group of the code is \(PGL(3,2)\) [4]. It is one of sixteen distinct \([[7,1,3]]\) codes [5].
Protection
Encoding
Transversal Gates
Gates
Decoding
Fault Tolerance
Realizations
Parents
- Honeycomb (6.6.6) color code — Steane code is a 2D color code defined on a seven-qubit patch of the 6.6.6 tiling.
- \([[2^r-1,1,3]]\) simplex code
- \([[2^r-1, 2^r-2r-1, 3]]\) quantum Hamming code
- \([[2^{2r-1}-1,1,2^r-1]]\) quantum punctured Reed-Muller code
- Quantum quadratic-residue (QR) code — The Steane code is a qubit quantum QR code [36,37].
- Quantum data-syndrome (QDS) code — There exists a set of stabilizer generators for the Steane code that make it a QDS code [38].
- Finite-geometry (FG) QLDPC code — The Steane code is the \(m=1\) member of the \([[2^{2m}+2^{m}+1,1,>2^{m}]]\) PG-QLDPC code family that is constructed from codes corresponding to lines and affine charts in \(PG(2,2^m)\) via the CSS construction [39; Def. 4.9].
- Group-representation code — The Steane code is a group-representation code with \(G\) being the \(2O\) subgroup of \(SU(2)\) [40].
- Concatenated Steane code — The concatenated Steane code at level \(m=1\) is the Steane code.
- Planar-perfect-tensor code — The Steane code is the smallest heptagon holographic code. The encoding of more general heptagon holographic codes is a holographic tensor network consisting of the encoding isometry for the Steane code, which is a planar-perfect tensor.
Cousins
- Cyclic quantum code — The Steane code is equivalent to a cyclic code via qubit permutations [41; Exam. 1].
- Codeword stabilized (CWS) code — The Steane code is equivalent via a single-qubit Clifford unitary to a CWS code for a particular graph and classical code [41; Exam. 4].
- Graph quantum code — Four non-isomorphic graphs yield graph quantum codes that are equivalent to the Steane code under a single-qubit-Clifford circuit [42].
- EA qubit stabilizer code — The Steane code is globally equivalent to a \([[6,1,3;1]]\) code, which is the smallest EA CSS code with that distance [2].
- \([7,4,3]\) Hamming code — The Steane code is constructed from the \([7,4,3]\) classical Hamming code via the CSS construction.
- Concatenated cat code — Two-component cat codes concatenated with Steane and Golay codes are estimated to be fault tolerant against photon loss noise with rate \(\eta < 5\times 10^{-4}\) provided that \(\alpha > 1.2\) [43].
- Tensor-network code — The Steane code can be built from two \([[4,2,2]]\) codes in the quantum Lego code framework [44].
- \(((7,2,3))\) Pollatsek-Ruskai code — The Pollatsek-Ruskai code can be continuously deformed to the Steane code [45].
- \([[10,1,2]]\) CSS code — A fault-tolerant universal gate set can be done via code switching between the Steane code and the \([[10,1,2]]\) code [19].
- \([[4,2,2]]\) Four-qubit code — The Steane code can be built from two \([[4,2,2]]\) codes in the quantum Lego code framework [44].
- \([[5,1,2]]\) rotated surface code — The \([[5,1,2]]\) rotated surface code can be obtained by morphing the Steane code [46].
- Quantum divisible code — A fault-tolerant \(T\) gate on the Steane code can be obtained by concatenating with particular quantum divisible codes [47].
- Raussendorf-Bravyi-Harrington (RBH) cluster-state code — Concatenation of the RBH code with small codes such as the \([[2,1,1]]\) repetition code, \([[4,1,1,2]]\) subsystem code, or Steane code can improve thresholds [48].
- \([[15,1,3]]\) quantum Reed-Muller code — The \([[15,1,3]]\) code can be viewed as a (gauge-fixed) doubled color code obtained from the Steane code via the doubling transformation [49]. A fault-tolerant universal gate set can be done via code switching between the Steane code and the \([[15,1,3]]\) code [15–18,50]. An \([[105,1,3]]\) alternative concatenation of the \([[15,1,3]]\) and Steane codes allows for a universal gate set consisting of gates that are close to transversal [51,52].
References
- [1]
- “Multiple-particle interference and quantum error correction”, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 452, 2551 (1996) DOI
- [2]
- B. Shaw et al., “Encoding one logical qubit into six physical qubits”, Physical Review A 78, (2008) arXiv:0803.1495 DOI
- [3]
- R. Raussendorf, “Key ideas in quantum error correction”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, 4541 (2012) DOI
- [4]
- H. Hao, “Investigations on Automorphism Groups of Quantum Stabilizer Codes”, (2021) arXiv:2109.12735
- [5]
- S. Yu, Q. Chen, and C. H. Oh, “Graphical Quantum Error-Correcting Codes”, (2007) arXiv:0709.1780
- [6]
- M. Nakahara, “Quantum Computing”, (2008) DOI
- [7]
- R. Zen et al., “Quantum Circuit Discovery for Fault-Tolerant Logical State Preparation with Reinforcement Learning”, (2024) arXiv:2402.17761
- [8]
- P. W. Shor, “Fault-tolerant quantum computation”, (1997) arXiv:quant-ph/9605011
- [9]
- B. Zeng, A. Cross, and I. L. Chuang, “Transversality versus Universality for Additive Quantum Codes”, (2007) arXiv:0706.1382
- [10]
- H. Goto, “Minimizing resource overheads for fault-tolerant preparation of encoded states of the Steane code”, Scientific Reports 6, (2016) DOI
- [11]
- N. Fazio, R. Harper, and S. Bartlett, “Logical Noise Bias in Magic State Injection”, (2024) arXiv:2401.10982
- [12]
- T. J. Yoder, R. Takagi, and I. L. Chuang, “Universal Fault-Tolerant Gates on Concatenated Stabilizer Codes”, Physical Review X 6, (2016) arXiv:1603.03948 DOI
- [13]
- Y. S. Weinstein, “Fidelity of an encoded [7,1,3] logical zero”, Physical Review A 84, (2011) arXiv:1101.1950 DOI
- [14]
- S. D. Buchbinder, C. L. Huang, and Y. S. Weinstein, “Encoding an Arbitrary State in a [7,1,3] Quantum Error Correction Code”, (2011) arXiv:1109.1714
- [15]
- A. Paetznick and B. W. Reichardt, “Universal Fault-Tolerant Quantum Computation with Only Transversal Gates and Error Correction”, Physical Review Letters 111, (2013) arXiv:1304.3709 DOI
- [16]
- J. T. Anderson, G. Duclos-Cianci, and D. Poulin, “Fault-Tolerant Conversion between the Steane and Reed-Muller Quantum Codes”, Physical Review Letters 113, (2014) arXiv:1403.2734 DOI
- [17]
- D.-X. Quan et al., “Fault-tolerant conversion between adjacent Reed–Muller quantum codes based on gauge fixing”, Journal of Physics A: Mathematical and Theoretical 51, 115305 (2018) arXiv:1703.03860 DOI
- [18]
- D. Banfield and A. Kay, “Implementing Logical Operators using Code Rewiring”, (2023) arXiv:2210.14074
- [19]
- I. Pogorelov et al., “Experimental fault-tolerant code switching”, (2024) arXiv:2403.13732
- [20]
- T. J. Yoder and I. H. Kim, “The surface code with a twist”, Quantum 1, 2 (2017) arXiv:1612.04795 DOI
- [21]
- R. Chao and B. W. Reichardt, “Quantum Error Correction with Only Two Extra Qubits”, Physical Review Letters 121, (2018) arXiv:1705.02329 DOI
- [22]
- B. W. Reichardt, “Fault-tolerant quantum error correction for Steane’s seven-qubit color code with few or no extra qubits”, Quantum Science and Technology 6, 015007 (2020) DOI
- [23]
- D. Bhatnagar et al., “Low-Depth Flag-Style Syndrome Extraction for Small Quantum Error-Correction Codes”, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) (2023) arXiv:2305.00784 DOI
- [24]
- D. Nigg et al., “Quantum computations on a topologically encoded qubit”, Science 345, 302 (2014) arXiv:1403.5426 DOI
- [25]
- C. Ryan-Anderson et al., “Realization of real-time fault-tolerant quantum error correction”, (2021) arXiv:2107.07505
- [26]
- P. Ball, “Real-Time Error Correction for Quantum Computing”, Physics 14, (2021) DOI
- [27]
- L. Postler et al., “Demonstration of fault-tolerant universal quantum gate operations”, Nature 605, 675 (2022) arXiv:2111.12654 DOI
- [28]
- C. Ryan-Anderson et al., “Implementing Fault-tolerant Entangling Gates on the Five-qubit Code and the Color Code”, (2022) arXiv:2208.01863
- [29]
- L. Postler et al., “Demonstration of fault-tolerant Steane quantum error correction”, (2023) arXiv:2312.09745
- [30]
- M. P. da Silva et al., “Demonstration of logical qubits and repeated error correction with better-than-physical error rates”, (2024) arXiv:2404.02280
- [31]
- K. Mayer et al., “Benchmarking logical three-qubit quantum Fourier transform encoded in the Steane code on a trapped-ion quantum computer”, (2024) arXiv:2404.08616
- [32]
- C. Ryan-Anderson et al., “High-fidelity and Fault-tolerant Teleportation of a Logical Qubit using Transversal Gates and Lattice Surgery on a Trapped-ion Quantum Computer”, (2024) arXiv:2404.16728
- [33]
- D. Miller et al., “Experimental measurement and a physical interpretation of quantum shadow enumerators”, (2024) arXiv:2408.16914
- [34]
- D. Bluvstein et al., “A quantum processor based on coherent transport of entangled atom arrays”, Nature 604, 451 (2022) arXiv:2112.03923 DOI
- [35]
- D. Bluvstein et al., “Logical quantum processor based on reconfigurable atom arrays”, Nature (2023) arXiv:2312.03982 DOI
- [36]
- C.-Y. Lai and C.-C. Lu, “A Construction of Quantum Stabilizer Codes Based on Syndrome Assignment by Classical Parity-Check Matrices”, IEEE Transactions on Information Theory 57, 7163 (2011) arXiv:0712.0103 DOI
- [37]
- A. Ashikhmin, C.-Y. Lai, and T. A. Brun, “Quantum Data-Syndrome Codes”, IEEE Journal on Selected Areas in Communications 38, 449 (2020) arXiv:1907.01393 DOI
- [38]
- Y. Fujiwara, “Ability of stabilizer quantum error correction to protect itself from its own imperfection”, Physical Review A 90, (2014) arXiv:1409.2559 DOI
- [39]
- B. Audoux and A. Couvreur, “On tensor products of CSS Codes”, (2018) arXiv:1512.07081
- [40]
- A. Denys and A. Leverrier, “Quantum error-correcting codes with a covariant encoding”, (2024) arXiv:2306.11621
- [41]
- A. A. Kovalev, I. Dumer, and L. P. Pryadko, “Design of additive quantum codes via the code-word-stabilized framework”, Physical Review A 84, (2011) arXiv:1108.5490 DOI
- [42]
- M. Grassl, A. Klappenecker, and M. Rotteler, “Graphs, quadratic forms, and quantum codes”, Proceedings IEEE International Symposium on Information Theory, arXiv:quant-ph/0703112 DOI
- [43]
- A. P. Lund, T. C. Ralph, and H. L. Haselgrove, “Fault-Tolerant Linear Optical Quantum Computing with Small-Amplitude Coherent States”, Physical Review Letters 100, (2008) arXiv:0707.0327 DOI
- [44]
- C. Cao and B. Lackey, “Quantum Lego: Building Quantum Error Correction Codes from Tensor Networks”, PRX Quantum 3, (2022) arXiv:2109.08158 DOI
- [45]
- M. Du et al., “Characterizing Quantum Codes via the Coefficients in Knill-Laflamme Conditions”, (2024) arXiv:2410.07983
- [46]
- M. Vasmer and A. Kubica, “Morphing Quantum Codes”, PRX Quantum 3, (2022) arXiv:2112.01446 DOI
- [47]
- J. Hu, Q. Liang, and R. Calderbank, “Divisible Codes for Quantum Computation”, (2022) arXiv:2204.13176
- [48]
- Z. Li, I. Kim, and P. Hayden, “Concatenation Schemes for Topological Fault-tolerant Quantum Error Correction”, Quantum 7, 1089 (2023) arXiv:2209.09390 DOI
- [49]
- S. Bravyi and A. Cross, “Doubled Color Codes”, (2015) arXiv:1509.03239
- [50]
- F. Butt et al., “Fault-Tolerant Code-Switching Protocols for Near-Term Quantum Processors”, PRX Quantum 5, (2024) arXiv:2306.17686 DOI
- [51]
- T. Jochym-O’Connor and R. Laflamme, “Using Concatenated Quantum Codes for Universal Fault-Tolerant Quantum Gates”, Physical Review Letters 112, (2014) arXiv:1309.3310 DOI
- [52]
- T. Jochym-O’Connor, A. Kubica, and T. J. Yoder, “Disjointness of Stabilizer Codes and Limitations on Fault-Tolerant Logical Gates”, Physical Review X 8, (2018) arXiv:1710.07256 DOI
Page edit log
- Remmy Zen (2024-07-15) — most recent
- Eric Huang (2024-03-18)
- Victor V. Albert (2022-08-04)
- Victor V. Albert (2022-03-14)
- Joseph T. Iosue (2021-12-19)
Cite as:
“\([[7,1,3]]\) Steane code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/steane