\([[15,1,3]]\) quantum Reed-Muller code[13] 

Description

\([[15,1,3]]\) CSS code that is most easily thought of as a tetrahedral 3D color code. This code contains 15 qubits, represented by four vertices, four face centers, six edge centers, and one body center. The tetrahedron is cellulated into four identical polyhedron cells by connecting the body center to all four face centers, where each face center is then connected by three adjacent edge centers. Each colored cell corresponds to a weight-eight \(X\)-check, and each face corresponds to a weight-4 \(Z\)-check. A logical \(Z\) is any weight-3 \(Z\)-string along an edge of the entire tetrahedron. The logical \(X\) is any weight-7 \(X\)-face of the entire tetrahedron.

Magic

Magic-state yield parameter \( \gamma= \log_d (n/k)\approx 2.47\) [5][4; Box 2].

Transversal Gates

This is the smallest qubit stabilizer code with a (strongly) transversal gate outside of the Clifford group [6].A transversal logical \(T^\dagger\) is implemented by applying a \(T\) gate on every qubit [1,4,7].A subsystem version yields a transversal \(CCZ\) gate [8].

Gates

Code is often used in magic-state distillation protocols because of its transversal \(T\) gate [3].

Fault Tolerance

A fault-tolerant universal gate set can be done via code switching between the Steane code and the \([[15,1,3]]\) code [710].

Threshold

Numerical study of concatenated thresholds of logical CNOT gates for various codes against depolarizing noise [11].

Parents

Cousins

  • Doubled color code — The \([[15,1,3]]\) code can be viewed as a (gauge-fixed) doubled color code obtained from the Steane code via the doubling transformation [14].
  • \([[7,1,3]]\) Steane code — The \([[15,1,3]]\) code can be viewed as a (gauge-fixed) doubled color code obtained from the Steane code via the doubling transformation [14]. A fault-tolerant universal gate set can be done via code switching between the Steane code and the \([[15,1,3]]\) code [710,15].
  • Concatenated quantum code — The concatenated \([[15,1,3]]\) code has a measurement threshold less than one [16].
  • Binary dihedral PI code — The \(((11,2,3))\) binary dihedral PI code realizes the \(T\) gate transversally, but requires fewer qubits than the \([[15,1,3]]\) quantum Reed-Muller code.
  • \([[10,1,2]]\) CSS code — The \([[10,1,2]]\) code can be obtained by morphing the \([[15,1,3]]\) code [17].
  • \([[8,3,2]]\) CSS code — The \([[8,3,2]]\) code can be obtained from a subset of physical qubits of the \([[15,1,3]]\) code [17].
  • \([[15, 7, 3]]\) quantum Hamming code — Gauging six of the seven logical qubits of the \([[15,7,3]]\) code yields the \([[15,1,3]]\) code [18].

References

[1]
E. Knill, R. Laflamme, and W. Zurek, “Threshold Accuracy for Quantum Computation”, (1996) arXiv:quant-ph/9610011
[2]
A. Steane, “Quantum Reed-Muller Codes”, (1996) arXiv:quant-ph/9608026
[3]
S. Bravyi and A. Kitaev, “Universal quantum computation with ideal Clifford gates and noisy ancillas”, Physical Review A 71, (2005) arXiv:quant-ph/0403025 DOI
[4]
E. T. Campbell, B. M. Terhal, and C. Vuillot, “Roads towards fault-tolerant universal quantum computation”, Nature 549, 172 (2017) arXiv:1612.07330 DOI
[5]
J. Haah et al., “Magic state distillation with low space overhead and optimal asymptotic input count”, Quantum 1, 31 (2017) arXiv:1703.07847 DOI
[6]
S. Koutsioumpas, D. Banfield, and A. Kay, “The Smallest Code with Transversal T”, (2022) arXiv:2210.14066
[7]
J. T. Anderson, G. Duclos-Cianci, and D. Poulin, “Fault-Tolerant Conversion between the Steane and Reed-Muller Quantum Codes”, Physical Review Letters 113, (2014) arXiv:1403.2734 DOI
[8]
A. Paetznick and B. W. Reichardt, “Universal Fault-Tolerant Quantum Computation with Only Transversal Gates and Error Correction”, Physical Review Letters 111, (2013) arXiv:1304.3709 DOI
[9]
D.-X. Quan et al., “Fault-tolerant conversion between adjacent Reed–Muller quantum codes based on gauge fixing”, Journal of Physics A: Mathematical and Theoretical 51, 115305 (2018) arXiv:1703.03860 DOI
[10]
D. Banfield and A. Kay, “Implementing Logical Operators using Code Rewiring”, (2023) arXiv:2210.14074
[11]
A. W. Cross, D. P. DiVincenzo, and B. M. Terhal, “A comparative code study for quantum fault-tolerance”, (2009) arXiv:0711.1556
[12]
M. A. Webster, B. J. Brown, and S. D. Bartlett, “The XP Stabiliser Formalism: a Generalisation of the Pauli Stabiliser Formalism with Arbitrary Phases”, Quantum 6, 815 (2022) arXiv:2203.00103 DOI
[13]
S. Nezami and J. Haah, “Classification of small triorthogonal codes”, Physical Review A 106, (2022) arXiv:2107.09684 DOI
[14]
S. Bravyi and A. Cross, “Doubled Color Codes”, (2015) arXiv:1509.03239
[15]
F. Butt et al., “Fault-Tolerant Code Switching Protocols for Near-Term Quantum Processors”, (2023) arXiv:2306.17686
[16]
D. Lee and B. Yoshida, “Randomly Monitored Quantum Codes”, (2024) arXiv:2402.00145
[17]
M. Vasmer and A. Kubica, “Morphing Quantum Codes”, PRX Quantum 3, (2022) arXiv:2112.01446 DOI
[18]
A. Kubica and M. E. Beverland, “Universal transversal gates with color codes: A simplified approach”, Physical Review A 91, (2015) arXiv:1410.0069 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: stab_15_1_3

Cite as:
\([[15,1,3]]\) quantum Reed-Muller code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/stab_15_1_3
BibTeX:
@incollection{eczoo_stab_15_1_3, title={\([[15,1,3]]\) quantum Reed-Muller code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/stab_15_1_3} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/stab_15_1_3

Cite as:

\([[15,1,3]]\) quantum Reed-Muller code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/stab_15_1_3

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/stabilizer/topological/color/3d_color/stab_15_1_3.yml.