[Jump to code hierarchy]

Quantum rainbow code[1]

Description

A CSS code whose qubits are associated with vertices of a simplex graph with \(m+1\) colors.

Magic

Hypergraph products of color codes yield quantum rainbow codes with growing distance and transversal gates in the Clifford hierarchy. In particular, utilizing this construction for quasi-hyperbolic color codes [2] yields an \([[n,O(n),O(\log n)]]\) triorthogonal code family with magic-state yield parameter \(\gamma\to 0\) [1].

Transversal Gates

Hypergraph products of color codes yield quantum rainbow codes with growing distance and transversal gates in the Clifford hierarchy [1].

Cousins

  • Hypergraph product (HGP) code— Hypergraph products of color codes yield quantum rainbow codes with growing distance and transversal gates in the Clifford hierarchy. In particular, utilizing this construction for quasi-hyperbolic color codes yields an \([[n,O(n),O(\log n)]]\) triorthogonal code family with magic-state yield parameter \(\gamma\to 0\) [1].
  • Triorthogonal code— Hypergraph products of color codes yield quantum rainbow codes with growing distance and transversal gates in the Clifford hierarchy. In particular, utilizing this construction for quasi-hyperbolic color codes [2] yields an \([[n,O(n),O(\log n)]]\) triorthogonal code family with magic-state yield parameter \(\gamma\to 0\) [1].
  • Quasi-hyperbolic color code— Hypergraph products of color codes yield quantum rainbow codes with growing distance and transversal gates in the Clifford hierarchy. In particular, utilizing this construction for quasi-hyperbolic color codes yields an \([[n,O(n),O(\log n)]]\) triorthogonal code family with magic-state yield parameter \(\gamma\to 0\) [1].

References

[1]
T. R. Scruby, A. Pesah, and M. Webster, “Quantum Rainbow Codes”, (2024) arXiv:2408.13130
[2]
G. Zhu, S. Sikander, E. Portnoy, A. W. Cross, and B. J. Brown, “Non-Clifford and parallelizable fault-tolerant logical gates on constant and almost-constant rate homological quantum LDPC codes via higher symmetries”, (2024) arXiv:2310.16982
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: quantum_rainbow

Cite as:
“Quantum rainbow code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/quantum_rainbow
BibTeX:
@incollection{eczoo_quantum_rainbow, title={Quantum rainbow code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/quantum_rainbow} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/quantum_rainbow

Cite as:

“Quantum rainbow code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/quantum_rainbow

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/stabilizer/magic/k-orthogonal/quantum_rainbow.yml.