\([[8,3,2]]\) CSS code[1,2] 

Also known as Smallest interesting color code.

Description

Smallest 3D color code whose physical qubits lie on vertices of a cube and which admits a (weakly) transversal CCZ gate.

Transversal Gates

CZ gates between any two logical qubits [3] and (weakly) transversal CCZ gate [13].

Fault Tolerance

CCZ gate can be distilled in a fault-tolerant manner [4].

Realizations

Trapped ions: one-qubit addition algorithm implemented fault-tolerantly on the Quantinuum H1-1 device [5].Superconducting circuits: fault-tolerant \(CZZ\) gate performed on IBM and IonQ devices [6].Rydberg atom arrays: Lukin group [7]. 48 logical qubits, 228 logical two-qubit gates, 48 logical CCZ gates, and error detection peformed in 16 blocks. Circuit outcomes were sampled and cross-entropy (XEB) was calculated to verify quantumness. Logical entanglement entropy was measured [8].

Parents

Cousins

  • \([[15,1,3]]\) quantum Reed-Muller code — The \([[8,3,2]]\) code can be obtained from a subset of physical qubits of the \([[15,1,3]]\) code [10].
  • 3D surface code — The \([[8,3,2]]\) code can be concatenated with a 3D surface code to yield a \([[O(d^3),3,2d]]\) code family that admits a transversal implementation of the logical \(CCZ\) gate [11].
  • Concatenated quantum code — The \([[8,3,2]]\) code can be concatenated with a 3D surface code to yield a \([[O(d^3),3,2d]]\) code family that admits a transversal implementation of the logical \(CCZ\) gate [11].

References

[1]
A. Kubica, B. Yoshida, and F. Pastawski, “Unfolding the color code”, New Journal of Physics 17, 083026 (2015) arXiv:1503.02065 DOI
[2]
E. Campbell, “The smallest interesting colour code,” Online available at https://earltcampbell.com/2016/09/26/the-smallest-interesting-colour-code/ (2016), accessed on 2019-12-09.
[3]
H. Chen et al., “Automated discovery of logical gates for quantum error correction (with Supplementary (153 pages))”, Quantum Information and Computation 22, 947 (2022) arXiv:1912.10063 DOI
[4]
J. Haah and M. B. Hastings, “Measurement sequences for magic state distillation”, Quantum 5, 383 (2021) arXiv:2007.07929 DOI
[5]
Y. Wang et al., “Fault-Tolerant One-Bit Addition with the Smallest Interesting Colour Code”, (2023) arXiv:2309.09893
[6]
D. H. Menendez, A. Ray, and M. Vasmer, “Implementing fault-tolerant non-Clifford gates using the [[8,3,2]] color code”, (2023) arXiv:2309.08663
[7]
Q. Xu et al., “Constant-Overhead Fault-Tolerant Quantum Computation with Reconfigurable Atom Arrays”, (2023) arXiv:2308.08648
[8]
D. Bluvstein et al., “Logical quantum processor based on reconfigurable atom arrays”, Nature (2023) arXiv:2312.03982 DOI
[9]
M. A. Webster, B. J. Brown, and S. D. Bartlett, “The XP Stabiliser Formalism: a Generalisation of the Pauli Stabiliser Formalism with Arbitrary Phases”, Quantum 6, 815 (2022) arXiv:2203.00103 DOI
[10]
M. Vasmer and A. Kubica, “Morphing Quantum Codes”, PRX Quantum 3, (2022) arXiv:2112.01446 DOI
[11]
D. Hangleiter et al., “Fault-tolerant compiling of classically hard IQP circuits on hypercubes”, (2024) arXiv:2404.19005
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: stab_8_3_2

Cite as:
\([[8,3,2]]\) CSS code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/stab_8_3_2
BibTeX:
@incollection{eczoo_stab_8_3_2, title={\([[8,3,2]]\) CSS code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/stab_8_3_2} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/stab_8_3_2

Cite as:

\([[8,3,2]]\) CSS code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/stab_8_3_2

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/small_distance/small/stab_8_3_2.yml.