Here is a list of approximate quantum codes.
Code | Description |
---|---|
Approximate quantum error-correcting code (AQECC) | Stub. |
Approximate secret-sharing code | A family of \( [[n,k,d]]_q \) CSS codes approximately correcting errors on up to \(\lfloor (n-1)/2 \rfloor\) qubits, i.e., with approximate distance approaching the no-cloning bound \(n/2\). Constructed using a non-degenerate CSS code, such as a polynomial quantum code, and a classical authentication scheme. The code can be viewed as an \(t\)-error tolerant secret sharing scheme. Since the code yields a small logical subspace using large registers that contain both classical and quantum information, it is not useful for practical error correction problems, but instead demonstrates the power of approximate quantum error correction. |
Covariant code | A block code on \(n\) subsystems that admits a group \(G\) of transversal gates. The group has to be finite for finite-dimensional codes due to the Eastin-Knill theorem. Continuous-\(G\) covariant codes, necessarily infinite-dimensional, are relevant to error correction of quantum reference frames [1] and error-corrected parameter estimation. |
Eigenstate thermalization hypothesis (ETH) code | Also called a thermodynamic code [2]. An \(n\)-qubit approximate code whose codespace is formed by eigenstates of a translationally-invariant quantum many-body system which satisfies the Eigenstate Thermalization Hypothesis (ETH). ETH ensures that codewords cannot be locally distinguished in the thermodynamic limit. Relevant many-body systems include 1D non-interacting spin chains, Motzkin chains, or Heisenberg models. |
GNU permutation-invariant code | Can be expressed in terms of Dicke states where the logical states are \begin{align} |\overline{\pm}\rangle = \sum_{\ell=0}^{n} \frac{(\pm 1)^\ell}{\sqrt{2^n}} \sqrt{n \choose \ell} |D^m_{g \ell}\rangle~. \tag*{(1)}\end{align} Here, \(m\) is the number of particles used for encoding \(1\) qubit, and \(g, n \leq m\) are arbitrary positive integers. The state \(|D^m_w\rangle\) is a Dicke state -- a normalized permutation-invariant state on \(m\) spin-half systems with \(w\) excitations, i.e., a normalized sum over all basis elements with \(w\) ones and \(m - w\) zeroes. |
Gottesman-Kitaev-Preskill (GKP) code | Quantum lattice code for a non-degenerate lattice, thereby admitting a finite-dimensional logical subspace. Codes on \(n\) modes can be constructed from lattices with \(2n\)-dimensional full-rank Gram matrices \(A\). |
Landau-level spin code | Approximate quantum code that encodes a qudit in the finite-dimensional Hilbert space of a single spin, i.e., a spherical Landau level. Codewords are approximately orthogonal Landau-level spin coherent states whose orientations are spaced maximally far apart along a great circle (equator) of the sphere. The larger the spin, the better the performance. |
Local Haar-random circuit qubit code | An \(n\)-qubit code whose codewords are a pair of approximately locally indistinguishable states produced by starting with any two orthogonal \(n\)-qubit states and acting with a random unitary circuit of depth polynomial in \(n\). Two states are locally indistinguishable if they cannot be distinguished by local measurements. A single layer of the encoding circuit is composed of about \(n/2\) two-qubit nearest-neighbor gates run in parallel, with each gate drawn randomly from the Haar distribution on two-qubit unitaries. |
Matrix-model code | Multimode-mode Fock-state bosonic approximate code derived from a matrix model, i.e., a nonabelian bosonic gauge theory with a large gauge group. The model's degrees of freedom are matrix-valued bosons \(a\), each consisting of \(N^2\) harmonic oscillator modes and subject to an \(SU(N)\) gauge symmetry. |
Matrix-product state (MPS) code | Also called a magnon code. An \(n\)-qubit approximate code whose codespace of \(k=\Omega(\log n)\) qubits is efficiently described in terms of matrix product states (MPS) or Bethe ansatz tensor networks. A no-go theorem states that open-boundary MPS that form a degenerate ground-state space of a gapped local Hamiltonian yield codes with distance that is only constant in the number of qubits \(n\), so MPS excitation ansatze have to be used to achieve a distance scaling nontrivially with \(n\). |
Qudit-into-oscillator code | Encodes \(K\)-dimensional Hilbert space into \(n\) bosonic modes. |
Renormalization group (RG) cat code | Code whose codespace is spanned by \(q\) field-theoretic coherent states which are flowing under the renormalization group (RG) flow of massive free fields. The code approximately protects against displacements that represent local (i.e., short-distance, ultraviolet, or UV) operators. Intuitively, this is because RG cat codewords represent non-local (i.e., long-distance) degrees of freedom, which should only be excitable by acting on a macroscopically large number of short-distance degrees of freedom. |
Singleton-bound approaching AQECC | Approximate quantum code of rate \(R\) that can tolerate adversarial errors nearly saturating the quantum Singleton bound of \((1-R)/2\). The formulation of such codes relies on a notion of quantum list decoding. Sampling a description of this code can be done with an efficient randomized algorithm with \(2^{-\Omega(n)}\) failure probability. |
Square-lattice GKP code | Single-mode GKP qudit-into-oscillator code based on the rectangular lattice. Its stabilizer generators are oscillator displacement operators \(\hat{S}_q(2\alpha)=e^{-2i\alpha \hat{p}}\) and \(\hat{S}_p(2\beta)=e^{2i\beta \hat{x}}\). To ensure \(\hat{S}_q(2\alpha)\) and \(\hat{S}_p(2\beta)\) generate a stabilizer group that is Abelian, there is a constraint that \(\alpha\beta=2q\pi\) where \(q\) is an integer denoting the logical dimension. |
W-state code | Encodes a quantum state of a \(d_L\)-dimensional Hilbert space into \(n\) physical quantum systems, each associated with a Hilbert space of dimension \(d_L+1\). The encoding resembles the structure of the W state [3]: \begin{align} \ket\psi \to \frac{1}{\sqrt{n}}\bigl(\ket{\psi\perp\perp\ldots} + \ket{\perp\psi\perp\ldots} + \cdots + \ket{\perp\perp\ldots\psi}\bigr)\ , \tag*{(2)}\end{align} where on each physical system, \(\ket\perp\) denotes the \((d_L+1)\)-th basis state and \(\ket\psi\) is encoded using the first \(d_L\) basis states. |
\(U(d)\)-covariant approximate erasure code | Covariant code whose construction takes in an arbitrary erasure-correcting code to yield an approximate QECC that is also covariant with respect to the unitary group. |
\([[4,2,2]]\) CSS code | Four-qubit CSS stabilizer code is the smallest qubit stabilizer code to detect a single-qubit error. Admits generators \(\{XXXX, ZZZZ\} \) and codewords \begin{align} \begin{split} |\overline{00}\rangle = (|0000\rangle + |1111\rangle)/\sqrt{2}~{\phantom{.}}\\ |\overline{01}\rangle = (|0011\rangle + |1100\rangle)/\sqrt{2}~{\phantom{.}}\\ |\overline{10}\rangle = (|0101\rangle + |1010\rangle)/\sqrt{2}~{\phantom{.}}\\ |\overline{11}\rangle = (|0110\rangle + |1001\rangle)/\sqrt{2}~. \end{split} \tag*{(3)}\end{align} This code is the smallest instance of the toric code, and its various single-qubit subcodes are small planar surface codes. |