Code | Description |
---|---|

Approximate quantum error-correcting code (AQECC) | Stub. |

Approximate secret-sharing code | A family of \( [[n,k,d]]_{GF(q)} \) CSS codes approximately correcting errors on up to \(\lfloor (n-1)/2 \rfloor\) qubits, i.e., with approximate distance approaching the no-cloning bound \(n/2\). Constructed using a non-degenerate CSS code, such as a polynomial quantum code, and a classical authentication scheme. The code can be viewed as an \(t\)-error tolerant secret sharing scheme. Since the code yields a small logical subspace using large registers that contain both classical and quantum information, it is not useful for practical error correction problems, but instead demonstrates the power of approximate quantum error correction. |

Covariant code | Code constructed in a physical space consisting of a tensor product of \(n\) subsystems (e.g., qubits, modular qudits, or Galois qudits) that admits a group \(G\) of transversal gates. The group has to be finite for finite-dimensional codes due to the Eastin-Knill theorem. Continuous-\(G\) covariant codes, necessarily infinite-dimensional, are relevant to error correction of quantum reference frames [1] and error-corrected parameter estimation. |

Eigenstate thermalization hypothesis (ETH) code | Also called a thermodynamic code [2]. An \(n\)-qubit approximate code whose codespace is formed by eigenstates of a translationally-invariant quantum many-body system which satisfies the Eigenstate Thermalization Hypothesis (ETH). ETH ensures that codewords cannot be locally distinguished in the thermodynamic limit. Relevant many-body systems include 1D non-interacting spin chains, Motzkin chains, or Heisenberg models. |

GNU permutation-invariant code | Can be expressed in terms of Dicke states where the logical states are \begin{align} |\overline{\pm}\rangle = \sum_{\ell=0}^{n} \frac{(\pm 1)^\ell}{\sqrt{2^n}} \sqrt{n \choose \ell} |D^m_{g \ell}\rangle~. \end{align} Here, \(m\) is the number of particles used for encoding \(1\) qubit, and \(g, n \leq m\) are arbitrary positive integers. The state \(|D^m_w\rangle\) is a Dicke state -- a normalized permutation-invariant state on \(m\) spin-half systems with \(w\) excitations, i.e., a normalized sum over all basis elements with \(w\) ones and \(m - w\) zeroes. |

Gottesman-Kitaev-Preskill (GKP) code | Single-mode GKP qudit-into-oscillator code based on the rectangular lattice. Its stabilizers are oscillator displacement operators \(\hat{S}_q(2\alpha)=e^{-2i\alpha \hat{p}}\) and \(\hat{S}_p(2\beta)=e^{2i\beta \hat{x}}\). To ensure \(\hat{S}_q(2\alpha)\) and \(\hat{S}_p(2\beta)\) generate a stabilizer group that is Abelian, there is another constraint that \(\alpha\beta=2k\pi\) where \(k\) is an integer. Codewords can be expressed as equal weight superpositions of coherent states on a rectangular lattice in phase space with spatial period \(2\sqrt{\pi}\). The exact GKP state is non-normalizable, so approximate constructs have to be considered. |

Local Haar-random circuit code | An \(n\)-qubit code whose codewords are a pair of approximately locally indistinguishable states produced by starting with any two orthogonal \(n\)-qubit states and acting with a random unitary circuit of depth polynomial in \(n\). Two states are locally indistinguishable if they cannot be distinguished by local measurements. A single layer of the encoding circuit is composed of about \(n/2\) two-qubit nearest-neighbor gates run in parallel, with each gate drawn randomly from the Haar distribution on two-qubit unitaries. The above circuit elements act on nearest-neighbor qubits arranged in a line, i.e., a one-dimensional geometry (\(D=1\), while codes for higher-dimensional geometries require \(O(n^{1/D})\)-depth circuits [3]. Follow-up work [4] revealed that optimal code properties require only \(O(\sqrt{n})\)-depth circuits for that case, and \(O(\sqrt{n})\)-depth circuits for a two-dimensional square-lattice geometry. |

Matrix-model code | Multimode-mode Fock-state bosonic approximate code derived from a matrix model, i.e., a non-Abelian bosonic gauge theory with a large gauge group. The model's degrees of freedom are matrix-valued bosons \(a\), each consisting of \(N^2\) harmonic oscillator modes and subject to an \(SU(N)\) gauge symmetry. |

Matrix-product state (MPS) code | Also called a magnon code. An \(n\)-qubit approximate code whose codespace of \(k=\Omega(\log n)\) qubits is efficiently described in terms of matrix product states (MPS) or Bethe ansatz tensor networks. A no-go theorem states that open-boundary MPS that form a degenerate ground-state space of a gapped local Hamiltonian yield codes with distance that is only constant in the number of qubits \(n\), so MPS excitation ansatze have to be used to achieve a distance scaling nontrivially with \(n\). |

Multi-mode GKP code | Also can be called a quantum lattice code. Bosonic stabilizer code on \(n\) bosonic modes whose stabilizer group is an infinite countable group of oscillator displacement operators which implement lattice translations in phase space. |

Qudit-into-oscillator code | Encodes \(K\)-dimensional Hilbert space into \(n\) bosonic modes. |

Renormalization group (RG) cat code | Code whose codespace is spanned by \(q\) field-theoretic coherent states which are flowing under the renormalization group (RG) flow of massive free fields. The code approximately protects against displacements that represent local (i.e., short-distance, ultraviolet, or UV) operators. Intuitively, this is because RG cat codewords represent non-local (i.e., long-distance) degrees of freedom, which should only be excitable by acting on a macroscopically large number of short-distance degrees of freedom. |

Singleton-bound approaching AQECC | Approximate quantum code of rate \(R\) that can tolerate adversarial errors nearly saturating the quantum Singleton bound of \((1-R)/2\). The formulation of such codes relies on a notion of quantum list decoding. Sampling a description of this code can be done with an efficient randomized algorithm with \(2^{-\Omega(n)}\) failure probability. |

W-state code | Encodes a quantum state of a \(d_L\)-dimensional Hilbert space into \(n\) physical quantum systems, each associated with a Hilbert space of dimension \(d_L+1\). The encoding resembles the structure of the W state [5]: \begin{align} \ket\psi \to \frac{1}{\sqrt{n}}\bigl(\ket{\psi\perp\perp\ldots} + \ket{\perp\psi\perp\ldots} + \cdots + \ket{\perp\perp\ldots\psi}\bigr)\ , \end{align} where on each physical system, \(\ket\perp\) denotes the \((d_L+1)\)-th basis state and \(\ket\psi\) is encoded using the first \(d_L\) basis states. |

\(U(d)\)-covariant approximate erasure code | Stub. |

\([[4,2,2]]\) CSS code | Also known as the \(C_4\) code. Four-qubit CSS stabilizer code with generators \(\{XXXX, ZZZZ\} \) and codewords \begin{align} \begin{split} |\overline{00}\rangle = (|0000\rangle + |1111\rangle)/\sqrt{2}~{\phantom{.}}\\ |\overline{01}\rangle = (|0011\rangle + |1100\rangle)/\sqrt{2}~{\phantom{.}}\\ |\overline{10}\rangle = (|0101\rangle + |1010\rangle)/\sqrt{2}~{\phantom{.}}\\ |\overline{11}\rangle = (|0110\rangle + |1001\rangle)/\sqrt{2}~. \end{split} \end{align} This code is the smallest single-qubit error-detecting code. It is also the smallest instance of the toric code, and its various single-qubit subcodes are small planar surface codes. |

## References

- [1]
- P. Hayden et al., “Error Correction of Quantum Reference Frame Information”, PRX Quantum 2, (2021). DOI; 1709.04471
- [2]
- P. Faist et al., “Continuous Symmetries and Approximate Quantum Error Correction”, Physical Review X 10, (2020). DOI; 1902.07714
- [3]
- F. G. S. L. Brandão, A. W. Harrow, and M. Horodecki, “Local Random Quantum Circuits are Approximate Polynomial-Designs”, Communications in Mathematical Physics 346, 397 (2016). DOI
- [4]
- M. J. Gullans et al., “Quantum Coding with Low-Depth Random Circuits”, Physical Review X 11, (2021). DOI; 2010.09775
- [5]
- W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways”, Physical Review A 62, (2000). DOI; quant-ph/0005115