Hessian QSC[1]
Description
Quantum spherical code encoding a logical qubit, with each codeword an equal superposition of vertices of a Hessian complex polyhedron. For the unit sphere, the codewords are \begin{align} |\overline{0}\rangle &= \frac{1}{\sqrt{27}}\left( \sum_{\mu,\nu=0}^{2} |0,\omega^{\mu},-\omega^{\nu}\rangle + |-\omega^{\nu},0,\omega^{\mu}\rangle + |\omega^{\mu},-\omega^{\nu},0\rangle \right) \tag*{(1)}\\ |\overline{1}\rangle &= \frac{1}{\sqrt{27}}\left( \sum_{\mu,\nu=0}^{2} |0,-\omega^{\mu},\omega^{\nu}\rangle + |\omega^{\nu},0,-\omega^{\mu}\rangle + |-\omega^{\mu},\omega^{\nu},0\rangle \right)~, \tag*{(2)}\end{align} where \(\omega = e^{\frac{2\pi i}{3}}\).
Protection
The Hessian QSC is a \(\langle 4, 5, 9 \rangle\) code, i.e. it detects 8 photon losses and protects against 3. The code also detects up to 4 ladder errors (losses or gains). The code resolution \( d_E = 1.0\).Cousin
- Hessian polyhedron code— Each codeword of the Hessian QSC is a quantum superposition of vertices of a Hessian complex polyhedron.
Member of code lists
Primary Hierarchy
References
- [1]
- S. P. Jain, J. T. Iosue, A. Barg, and V. V. Albert, “Quantum spherical codes”, Nature Physics (2024) arXiv:2302.11593 DOI
Page edit log
- Victor V. Albert (2023-04-09) — most recent
- Shubham P. Jain (2023-04-08)
Cite as:
“Hessian QSC”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/hessian_qsc