Brown-Fawzi random Clifford-circuit code[1] 

Description

An \([[n,k]]\) stabilizer code whose encoder is a random Clifford circuit of depth \(O(\log^3 n)\).

An \(n\)-qubit quantum encoding circuit with \(O(n^2 \log n)\)) random two-qubit Clifford gates yields a code with distance \(d\) with probability \(1 - \Omega(1/n^8)\), granted that \begin{equation} \frac{k}{n} < 1 - \frac{d}{n}\log_2 3 - h\left(\frac{d}{n}\right)~, \tag*{(1)}\end{equation} where \(h\) is the entropy function. Noting that two gates acting on disjoint qubits could be executed simultaneously, the depth of a circuit with such a size is typically of order \(O(\log^3 n)\).'

Rate

The achievable distance of these codes is asymptotically the same as a code whose encoder is a random (not necessarily log-depth) general Clifford unitary [1].

Encoding

Random \(\log^3\)-depth Clifford circuit.

Decoding

Minimum-weight decoding via using tropical tensor networks [2].

Fault Tolerance

Fault-tolerant state preparation [2].

Parents

Cousin

  • Circuit-to-Hamiltonian approximate code — Circuit-to-Hamiltonian approximate codes are constructed by converting the encoding circuit of a Brown-Fawzi random Clifford-circuit code into a Hamiltonian using the spacetime circuit-to-Hamiltonian construction [3,4].

References

[1]
W. Brown and O. Fawzi, “Short random circuits define good quantum error correcting codes”, 2013 IEEE International Symposium on Information Theory (2013) arXiv:1312.7646 DOI
[2]
J. Nelson, G. Bentsen, S. T. Flammia, and M. J. Gullans, “Fault-Tolerant Quantum Memory using Low-Depth Random Circuit Codes”, (2023) arXiv:2311.17985
[3]
A. Mizel, D. A. Lidar, and M. Mitchell, “Simple Proof of Equivalence between Adiabatic Quantum Computation and the Circuit Model”, Physical Review Letters 99, (2007) arXiv:quant-ph/0609067 DOI
[4]
N. P. Breuckmann and B. M. Terhal, “Space-time circuit-to-Hamiltonian construction and its applications”, Journal of Physics A: Mathematical and Theoretical 47, 195304 (2014) arXiv:1311.6101 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: nonlocal_lowdepth

Cite as:
“Brown-Fawzi random Clifford-circuit code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/nonlocal_lowdepth
BibTeX:
@incollection{eczoo_nonlocal_lowdepth, title={Brown-Fawzi random Clifford-circuit code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/nonlocal_lowdepth} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/nonlocal_lowdepth

Cite as:

“Brown-Fawzi random Clifford-circuit code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/nonlocal_lowdepth

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/dynamic/random/nonlocal_lowdepth.yml.