Constant-excitation (CE) code[1][2][3]


Code whose codewords lie in an excited-state eigenspace of a Hamiltonian governing the total energy or total number of excitations of the underlying quantum system. For qubit codes, such a Hamiltonian is the total spin Hamiltonian, \(H=\sum_i Z_i\). For bosonic codes, such as Fock-state codes, codewords are in an eigenspace with eigenvalue \(N>0\) of the total excitation or energy Hamiltonian, \(H=\sum_i \hat{n}_i\).

One of the first such codes [1] is a \(((8,1,3))\) qubit code, with codewords \begin{align} \begin{split} |\overline{0}\rangle&= |00001111\rangle + |11101000\rangle − |10010110\rangle − |01110001\rangle\\ & +|11010100\rangle + |00110011\rangle + |01001101\rangle + |10101010\rangle\\ |\overline{1}\rangle&= X^{\otimes 8} |\overline{0}\rangle~. \end{split} \end{align} Each logical state is a superposition of computational basis states with four excitations.


Fock-state CE codes can be used in a protocol that achieves the two-way quantum capacity of the pure-loss Gaussian channel [4].


  • Hamiltonian-based code — Constant-excitation codes are associated with a Hamiltonian governing the total excitations of the system.


  • Chuang-Leung-Yamamoto code — Chuang-Leung-Yamamoto codewords are constructed out of Fock states with the same total excitation number.

Zoo code information

Internal code ID: constant_excitation

Your contribution is welcome!

on (edit & pull request)

edit on this site

Zoo Code ID: constant_excitation

Cite as:
“Constant-excitation (CE) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022.
@incollection{eczoo_constant_excitation, title={Constant-excitation (CE) code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={} }
Permanent link:


M. B. Plenio, V. Vedral, and P. L. Knight, “Quantum error correction in the presence of spontaneous emission”, Physical Review A 55, 67 (1997). DOI; quant-ph/9603022
P. Zanardi and M. Rasetti, “Noiseless Quantum Codes”, Physical Review Letters 79, 3306 (1997). DOI; quant-ph/9705044
D. A. Lidar, D. Bacon, and K. B. Whaley, “Concatenating Decoherence-Free Subspaces with Quantum Error Correcting Codes”, Physical Review Letters 82, 4556 (1999). DOI; quant-ph/9809081
Matthew S. Winnel et al., “Achieving the ultimate end-to-end rates of lossy quantum communication networks”. 2203.13924

Cite as:

“Constant-excitation (CE) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022.