[Jump to code hierarchy]

Fermion code

Description

Finite-dimensional quantum error-correcting code encoding a logical qudit or fermionic Hilbert space into a physical Fock space of fermionic modes. Codes are typically described using Majorana operators, which are linear combinations of fermionic creation and annihilation operators [1]. Majorana operators may either be considered individually or paired in various ways into creation and annihilation operators to yield fermionic modes.

Admissible codewords include fermionic states, a subset of which is the Gaussian fermionic states [26].

Encoding

A fermionic code using fermion-number eigenstates as codewords does not admit fermionic logical operators [7].

Gates

Clifford operations on fermionic codes, shown [2] to be equivalent to match gates [8], can be formulated using Fermionic Linear Optics, a classically simulable model of computation [26,9]. The structure of the Majorana Clifford group has been studied [10].Non-Clifford gates can be done using gate teleportation, in which a gate can be obtained from a particular magic state (a.k.a. resource state) [9,1114].General gates include include qubit-like \(S\), \(T\), and \(CZ\) gates acting on either logical qubit or logical fermionic encodings. Fermionic gates include braiding gates which correspond to exchanging Majorana modes. Hybrid gates include \(CZ_{qf}\) gates between a logical qubit and a logical fermion. The braiding, \(CZ_{f}\), \(CZ_{qf}\), Hadamard, \(S\), and \(T\) gates are universal [7].Logical-fermion circuits constructed out of certain transversal gates do not admit a lower \(T\) gate count than logical-qubit circuits [7].Using fermion codes with logical fermion encodings and the fermionic fast Fourier transform [15] can yield exponential improvements in circuit depth over fermion-into-qubit encodings [7].

Notes

See Ref. [16] for an introduction into Majorana-based qubits.

Cousins

  • Bosonic code— Bosonic (fermionic) codes are associated with bosonic (fermionic) degrees of freedom.
  • Fermion-into-qubit code— Fermion (fermion-into-qubit) codes encode logical information into a physical space of fermionic modes (qubits). The Majorana operator algebra is isomorphic to the qubit Pauli-operator algebra via various fermion-into-qubit encodings. Various conditions on when a fermion code is exactly solvable via a fermion-into-qubit mapping have been formulated [17,18]. Using fermion codes with logical fermion encodings and the fermionic fast Fourier transform [15] can yield exponential improvements in circuit depth over fermion-into-qubit encodings [7].
  • Constant-excitation (CE) code— Fermion codewords lying in a fixed fermion-number subspace have to lie in the same subspace in order to protect against changes in fermion number [7].

Primary Hierarchy

Parents
The Majorana operator algebra is isomorphic to the qubit Pauli-operator algebra via various fermion-into-qubit encodings.
Fermion code
Children

References

[1]
S. B. Bravyi and A. Yu. Kitaev, “Fermionic Quantum Computation”, Annals of Physics 298, 210 (2002) arXiv:quant-ph/0003137 DOI
[2]
E. Knill, “Fermionic Linear Optics and Matchgates”, (2001) arXiv:quant-ph/0108033
[3]
B. M. Terhal and D. P. DiVincenzo, “Classical simulation of noninteracting-fermion quantum circuits”, Physical Review A 65, (2002) arXiv:quant-ph/0108010 DOI
[4]
S. Bravyi, “Lagrangian representation for fermionic linear optics”, (2004) arXiv:quant-ph/0404180
[5]
L. Hackl and E. Bianchi, “Bosonic and fermionic Gaussian states from Kähler structures”, SciPost Physics Core 4, (2021) arXiv:2010.15518 DOI
[6]
T. Guaita, L. Hackl, and T. Quella, “Representation theory of Gaussian unitary transformations for bosonic and fermionic systems”, (2024) arXiv:2409.11628
[7]
A. Schuckert, E. Crane, A. V. Gorshkov, M. Hafezi, and M. J. Gullans, “Fermion-qubit fault-tolerant quantum computing”, (2024) arXiv:2411.08955
[8]
L. G. Valiant, “Quantum computers that can be simulated classically in polynomial time”, Proceedings of the thirty-third annual ACM symposium on Theory of computing 114 (2001) DOI
[9]
R. Jozsa and A. Miyake, “Matchgates and classical simulation of quantum circuits”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464, 3089 (2008) arXiv:0804.4050 DOI
[10]
V. Bettaque and B. Swingle, “The Structure of the Majorana Clifford Group”, (2024) arXiv:2407.11319
[11]
Quantum Information and Computation 14, (2014) arXiv:1308.1463 DOI
[12]
D. J. Brod, “Efficient classical simulation of matchgate circuits with generalized inputs and measurements”, Physical Review A 93, (2016) arXiv:1602.03539 DOI
[13]
M. Hebenstreit, R. Jozsa, B. Kraus, S. Strelchuk, and M. Yoganathan, “All Pure Fermionic Non-Gaussian States Are Magic States for Matchgate Computations”, Physical Review Letters 123, (2019) arXiv:1905.08584 DOI
[14]
L. Coffman, G. Smith, and X. Gao, “Measuring Non-Gaussian Magic in Fermions: Convolution, Entropy, and the Violation of Wick’s Theorem and the Matchgate Identity”, (2025) arXiv:2501.06179
[15]
R. Babbush, N. Wiebe, J. McClean, J. McClain, H. Neven, and G. K.-L. Chan, “Low-Depth Quantum Simulation of Materials”, Physical Review X 8, (2018) arXiv:1706.00023 DOI
[16]
F. Hassler, “Majorana Qubits”, (2014) arXiv:1404.0897
[17]
A. Chapman and S. T. Flammia, “Characterization of solvable spin models via graph invariants”, Quantum 4, 278 (2020) arXiv:2003.05465 DOI
[18]
S. J. Elman, A. Chapman, and S. T. Flammia, “Free Fermions Behind the Disguise”, Communications in Mathematical Physics 388, 969 (2021) arXiv:2012.07857 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: fermions

Cite as:
“Fermion code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2025. https://errorcorrectionzoo.org/c/fermions
BibTeX:
@incollection{eczoo_fermions, title={Fermion code}, booktitle={The Error Correction Zoo}, year={2025}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/fermions} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/fermions

Cite as:

“Fermion code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2025. https://errorcorrectionzoo.org/c/fermions

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/majorana/fermions.yml.