Description
Finite-dimensional quantum error-correcting code encoding a logical (qudit or fermionic) Hilbert space into a physical Fock space of fermionic modes. Codes are typically described using Majorana operators, which are linear combinations of fermionic creation and annihilation operators [1].
Gates
Clifford operations on fermionic codes can often be formulated using Fermionic Linear Optics, a classically simulable model of computation [2–4]. The structure of the Majorana Clifford group has been studied [5].
Notes
See Ref. [6] for an introduction into Majorana-based qubits.
Parent
- Qubit code — The Majorana operator algebra is isomorphic to the qubit Pauli-operator algebra via various fermion-into-qubit encodings.
Children
Cousins
- Bosonic code — Bosonic (fermionic) codes are associated with bosonic (fermionic) degrees of freedom.
- Fermion-into-qubit code — Fermion (fermion-into-qubit) codes encode logical information into a physical space of fermionic modes (qubits). The Majorana operator algebra is isomorphic to the qubit Pauli-operator algebra via various fermion-into-qubit encodings. Various conditions on when a fermion code is exactly solvable via a fermion-into-qubit mapping have been formulated [7,8].
References
- [1]
- S. B. Bravyi and A. Yu. Kitaev, “Fermionic Quantum Computation”, Annals of Physics 298, 210 (2002) arXiv:quant-ph/0003137 DOI
- [2]
- E. Knill, “Fermionic Linear Optics and Matchgates”, (2001) arXiv:quant-ph/0108033
- [3]
- B. M. Terhal and D. P. DiVincenzo, “Classical simulation of noninteracting-fermion quantum circuits”, Physical Review A 65, (2002) arXiv:quant-ph/0108010 DOI
- [4]
- S. Bravyi, “Lagrangian representation for fermionic linear optics”, (2004) arXiv:quant-ph/0404180
- [5]
- V. Bettaque and B. Swingle, “The Structure of the Majorana Clifford Group”, (2024) arXiv:2407.11319
- [6]
- F. Hassler, “Majorana Qubits”, (2014) arXiv:1404.0897
- [7]
- A. Chapman and S. T. Flammia, “Characterization of solvable spin models via graph invariants”, Quantum 4, 278 (2020) arXiv:2003.05465 DOI
- [8]
- S. J. Elman, A. Chapman, and S. T. Flammia, “Free Fermions Behind the Disguise”, Communications in Mathematical Physics 388, 969 (2021) arXiv:2012.07857 DOI
Page edit log
- Victor V. Albert (2022-12-04) — most recent
- Victor V. Albert (2021-12-01)
Cite as:
“Fermion code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/fermions