Here is a list of codes encoding logical information into fermionic systems.
Code | Description |
---|---|
Fermion code | Finite-dimensional quantum error-correcting code encoding a logical (qudit or fermionic) Hilbert space into a physical Fock space of fermionic modes. Codes are typically described using Majorana operators, which are linear combinations of fermionic creation and annihilation operators [1]. |
Kitaev chain code | An \([[n,1,1]]_{f}\) Majorana stabilizer code forming the ground-state of the Kitaev Majorana chain (a.k.a. Kitaev Majorana wire) in its fermionic topological phase, which is unitarily equivalent to the 1D quantum Ising model in the symmetry-breaking phase via the Jordan-Wigner transformation. The code is usually defined using the algebra of two anti-commuting Majorana operators called Majorana zero modes (MZMs) or Majorana edge modes (MEMs). |
Majorana box qubit | An \([[n,1,2]]_{f}\) Majorana stabilizer code forming the even-fermion-parity ground-state subspace of two parallel Kitaev Majorana chains in their fermionic topological phase. The \([[2,1,2]]_{f}\) version is called the tetron Majorana code. An \([[3,2,2]]_{f}\) extension using three Kitaev chains and housing two logical qubits of the same parity is called the hexon Majorana code. Similarly, octon, decon, and dodecon are codes defined by the positive-parity subspace of \(4\), \(5\), and \(6\) fermionic modes, respectively [2]. |
Majorana checkerboard code | A Majorana analogue of the X-cube model defined on a cubic lattice. The code admits weight-eight Majorana stabilizer generators on the eight vertices of each cube of a checkerboard sublattice. |
Majorana color code | Majorana analogue of the color code defined on a 2D tricolorable lattice and constructed out of Majorana box qubit codes placed on patches of the lattice. |
Majorana stabilizer code | A stabilizer code whose stabilizers are products of an even number of Majorana fermion operators, analogous to Pauli strings for a traditional stabilizer code and referred to as Majorana stabilizers. The codespace is the mutual \(+1\) eigenspace of all Majorana stabilizers. In such systems, Majorana fermions may either be considered individually or paired into creation and annihilation operators for fermionic modes. Codes can be denoted as \([[n,k,d]]_{f}\) [3], where \(n\) is the number of fermionic modes (equivalently, \(2n\) Majorana modes). |
Majorana surface code | Majorana analogue of the surface code defined on a 2D lattice and constructed out of Majorana box qubit codes placed on patches of the lattice. |
SYK code | Approximate \(n\)-fermionic code whose codewords are low-energy states of the Sachdev-Ye-Kitaev (SYK) Hamiltonian [4,5] or other low-rank SYK models [6,7]. |
References
- [1]
- S. B. Bravyi and A. Yu. Kitaev, “Fermionic Quantum Computation”, Annals of Physics 298, 210 (2002) arXiv:quant-ph/0003137 DOI
- [2]
- D. Litinski and F. von Oppen, “Quantum computing with Majorana fermion codes”, Physical Review B 97, (2018) arXiv:1801.08143 DOI
- [3]
- S. Vijay and L. Fu, “Quantum Error Correction for Complex and Majorana Fermion Qubits”, (2017) arXiv:1703.00459
- [4]
- S. Sachdev and J. Ye, “Gapless spin-fluid ground state in a random quantum Heisenberg magnet”, Physical Review Letters 70, 3339 (1993) arXiv:cond-mat/9212030 DOI
- [5]
- Kitaev, Alexei. "A simple model of quantum holography (part 2)." Entanglement in Strongly-Correlated Quantum Matter (2015): 38.
- [6]
- J. Kim, X. Cao, and E. Altman, “Low-rank Sachdev-Ye-Kitaev models”, Physical Review B 101, (2020) arXiv:1910.10173 DOI
- [7]
- J. Kim, E. Altman, and X. Cao, “Dirac fast scramblers”, Physical Review B 103, (2021) arXiv:2010.10545 DOI