Majorana box qubit[13] 

Description

An \([[n,1,2]]_{f}\) Majorana stabilizer code forming the even-fermion-parity ground-state subspace of two parallel Kitaev Majorana chains in their fermionic topological phase. The \([[2,1,2]]_{f}\) version is called the tetron Majorana code. An \([[3,2,2]]_{f}\) extension using three Kitaev chains and housing two logical qubits of the same parity is called the hexon Majorana code. Similarly, octon, decon, and dodecon are codes defined by the positive-parity subspace of \(4\), \(5\), and \(6\) fermionic modes, respectively [4].

Protection

Errors affecting a sufficiently low but even number of Majoranas can be detected and corrected. Tetrons can also correct some odd-weight errors [5].

Gates

Braiding and fusion of MZMs, which act as Ising anyons [6,7].

Decoding

Qubit readout can be done by charge sensing [2,3,7,8].

Parents

Child

  • Kitaev chain code — Kitaev chain codewords can be obtained by restricting to only one Kitaev chain out of the two chains that define the tetron Majorana code.

Cousins

  • Hamiltonian-based code — The tetron code forms the ground-state subspace of two Kitaev Majorana chain Hamiltonians.
  • Majorana color code — Majorana box qubits, such as hexons, tetrons, octons, and decons, are placed onto patches of a 2D lattice to form Majorana color codes [4; Table I].
  • Majorana surface code — Majorana box qubits, such as hexons, tetrons, octons, and dodecons, are placed onto patches of a 2D lattice to form Majorana surface codes [4; Table I].

References

[1]
A. Y. Kitaev, “Unpaired Majorana fermions in quantum wires”, Physics-Uspekhi 44, 131 (2001) arXiv:cond-mat/0010440 DOI
[2]
S. Plugge et al., “Majorana box qubits”, New Journal of Physics 19, 012001 (2017) arXiv:1609.01697 DOI
[3]
T. Karzig et al., “Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes”, Physical Review B 95, (2017) arXiv:1610.05289 DOI
[4]
D. Litinski and F. von Oppen, “Quantum computing with Majorana fermion codes”, Physical Review B 97, (2018) arXiv:1801.08143 DOI
[5]
S. Kundu and B. W. Reichardt, “Majorana qubit codes that also correct odd-weight errors”, (2023) arXiv:2311.01779
[6]
J. Alicea et al., “Non-Abelian statistics and topological quantum information processing in 1D wire networks”, Nature Physics 7, 412 (2011) arXiv:1006.4395 DOI
[7]
D. Aasen et al., “Milestones Toward Majorana-Based Quantum Computing”, Physical Review X 6, (2016) arXiv:1511.05153 DOI
[8]
J. F. Steiner and F. von Oppen, “Readout of Majorana qubits”, Physical Review Research 2, (2020) arXiv:2004.02124 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: mbq

Cite as:
“Majorana box qubit”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/mbq
BibTeX:
@incollection{eczoo_mbq, title={Majorana box qubit}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/mbq} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/mbq

Cite as:

“Majorana box qubit”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/mbq

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/majorana/mbq.yml.