[Jump to code hierarchy]

Operator-algebra QECC (OAQECC)[16]

Description

A code family that encompasses ordinary (i.e., subspace) codes, subsystem codes, classical-quantum codes, and hybrid codes using a unified operator-algebraic framework.

A simple example encompassing elements of all subfamilies encodes quantum information and a single classical bit into a direct sum of two subsystem codes. A quantum subsystem code \(\mathsf{A}_j\otimes\mathsf{B}_j\), with \(\mathsf{A}_j\) the logical factor associated with the quantum information, and \(\mathsf{B}_j\) the gauge factor, is associated with each of the two values \(j\in\{0,1\}\) of the classical bit. The corresponding decomposition of the Hilbert space \(\mathsf{H}\) is \begin{align} \mathsf{H}=(\mathsf{A}_{1}\otimes\mathsf{B}_{1})\oplus(\mathsf{A}_{2}\otimes\mathsf{B}_{2})\oplus\mathsf{C}^{\perp}~, \tag*{(1)}\end{align} where \(\mathsf{C}^\perp\) is the combined error space of both codes. The above code reduces to a subsystem code when \(\mathsf{A}_{2}\otimes\mathsf{B}_{2}\) is trivial, reduces to a classical-quantum code when \(\mathsf{A}_{1,2}\) are both trivial, reduces to a hybrid code when \(\mathsf{B}_{1,2}\) are both trivial, and reduces to an ordinary (i.e., subspace) code when \(\mathsf{B_1}\) and \(\mathsf{A}_{2}\otimes\mathsf{B}_{2}\) are both trivial.

In general, an OAQECC code is determined by a finite dimensional \(C^*\) algebra \(\mathcal{A}\) of operators on \(\mathsf{H}\). This logical algebra induces a decomposition of the Hilbert space as \begin{align}\mathsf{H} = \bigoplus_\gamma \mathsf{A}_\gamma \otimes \mathsf{B}_\gamma,\tag*{(2)}\end{align} with respect to which \(\mathcal{A}\) takes the form \begin{align}\mathcal{A} = \bigoplus_\gamma I_\gamma \otimes \mathcal{L}(\mathsf{B}_\gamma),\tag*{(3)}\end{align} where \(\mathcal{L}(\mathsf{B}_\gamma)\) denotes the full set of linear maps on \(\mathsf{B}_\gamma\). The \(\mathsf{A}_j\) factors can be used to store quantum information, \(\gamma\) indexes the block structure of the code, while \(\mathsf{B}_j\) determine its gauge structure. Together, the above forms the most general form of an information preserving structure [79].

Protection

Given an error operation \(\mathcal{E}\), one says that \(\mathcal{A}\) is correctable for \(\mathcal{E}\) if there exists a recovery operation \(\mathcal{R}\) such that \begin{align}\Pi_{\mathcal{A}} (\mathcal{R} \circ \mathcal{E})^\dagger(X) \Pi_{\mathcal{A}} = X\tag*{(4)}\end{align} for all \(X \in \mathcal{A}\), where \(\Pi_{\mathcal{A}}\) is the unit projection onto \(\mathcal{A}\).

Equivalently, \(\mathcal{A}\) is correctable for \(\mathcal{E}\) if there exists a recovery operation \(\mathcal{R}\) such that for any \(\gamma\) and density operators \(\rho_\gamma,\sigma_\gamma\) supported on \(\mathsf{A}_\gamma\) and \(\mathsf{B}_\gamma\), respectively, there exists a state \(\tau_\gamma\) supported on \(A_\gamma\) such that \begin{align}(\mathcal{R} \circ \mathcal{E})(\rho_\gamma \otimes \sigma_\gamma) = \tau_\gamma \otimes \sigma_\gamma.\tag*{(5)}\end{align}

An algebraic condition for correctability can be given in terms of the Kraus operators \(E_j\) of \(\mathcal{E}\). Indeed, \(\mathcal{A}\) is correctable for \(\mathcal{E}\) if \begin{align}\Pi_{\mathcal{A}} E_j^\dagger E_k \Pi_{\mathcal{A}} \in \mathcal{A}'\tag*{(6)}\end{align} for all \(j,k\), where \(\mathcal{A}'\) is the commutant of \(\mathcal{A}\).

Tradeoffs between error correction and privacy have been studied [10].

Cousin

Member of code lists

Primary Hierarchy

Parents
Approximate OAQECCs correcting a noise channel exactly reduce to OAQECCs.
Operator-algebra QECC (OAQECC)
Children
An OAQECC that retains its block structure for storing classical information but stores no quantum information and has no gauge degrees of freedom (e.g., gauge qubits) is a c-q code.
An OAQECC which has no gauge structure (e.g., gauge qubits) but has a block structure that corresponds to a classical code is a hybrid QECC.
An OAQECC which has gauge structure (e.g., gauge qubits) but no block structure is a subsystem QECC.

References

[1]
C. Bény, A. Kempf, and D. W. Kribs, “Generalization of Quantum Error Correction via the Heisenberg Picture”, Physical Review Letters 98, (2007) arXiv:quant-ph/0608071 DOI
[2]
C. Bény, A. Kempf, and D. W. Kribs, “Quantum error correction of observables”, Physical Review A 76, (2007) arXiv:0705.1574 DOI
[3]
C. Bény, “Information flow at the quantum-classical boundary”, (2009) arXiv:0901.3629
[4]
G. Kuperberg and N. Weaver, “A von Neumann algebra approach to quantum metrics”, (2010) arXiv:1005.0353
[5]
C. BÉNY, D. W. KRIBS, and A. PASIEKA, “ALGEBRAIC FORMULATION OF QUANTUM ERROR CORRECTION”, International Journal of Quantum Information 06, 597 (2008) DOI
[6]
K. Furuya, N. Lashkari, and S. Ouseph, “Real-space RG, error correction and Petz map”, Journal of High Energy Physics 2022, (2022) arXiv:2012.14001 DOI
[7]
M.-D. Choi and D. W. Kribs, “Method to Find Quantum Noiseless Subsystems”, Physical Review Letters 96, (2006) arXiv:quant-ph/0507213 DOI
[8]
R. Blume-Kohout, H. K. Ng, D. Poulin, and L. Viola, “Characterizing the Structure of Preserved Information in Quantum Processes”, Physical Review Letters 100, (2008) arXiv:0705.4282 DOI
[9]
R. Blume-Kohout, H. K. Ng, D. Poulin, and L. Viola, “Information-preserving structures: A general framework for quantum zero-error information”, Physical Review A 82, (2010) arXiv:1006.1358 DOI
[10]
D. W. Kribs, J. Levick, M. I. Nelson, R. Pereira, and M. Rahaman, “Quantum Complementarity and Operator Structures”, (2019) arXiv:1811.10425
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: oaecc

Cite as:
“Operator-algebra QECC (OAQECC)”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), NaN. https://errorcorrectionzoo.org/c/oaecc
BibTeX:
@incollection{eczoo_oaecc, title={Operator-algebra QECC (OAQECC)}, booktitle={The Error Correction Zoo}, year={NaN}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/oaecc} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/oaecc

Cite as:

“Operator-algebra QECC (OAQECC)”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), NaN. https://errorcorrectionzoo.org/c/oaecc

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/oaecc.yml.