Description
Quantum systems can be roughly characterized by two types of noise, a bit-flip noise that maps canonical basis states into each other, and a phase-flip noise that induces relative phases between superpositions of such basis states. A code cannot protect against both types of noise arbitrarily well, and there is a tradeoff between the two types of protection. An asymmetric quantum code is one that performs much better against one type of noise than the other type. Such codes typically have tunable distances against each noise type and include CSS codes, GKP codes, and QSCs.Protection
Noise channels for which one type of noise is more prominent than the other are called asymmetric-noise channels or biased-noise channels. An example of a noise-biased channel is a Pauli channel of independent \(X\) and \(Z\)-type noise with \(p_X \gg p_Z\) or visa versa.
In the context of comparing weight as well as of determining distances for noise models biased toward \(X\)- or \(Z\)-type errors, an extended notation for asymmetric CSS block quantum codes is \([[n,k,(d_X,d_Z)]]\) or \([[n,k,d_X/d_Z]]\), where \(d_{X,Z}\) are the \(X\)- and \(Z\)-distances, respectively [3]. An asymmetric Singleton bound and linear programming bounds for asymmetric CSS codes have been formulated [4], as well as asymmetric quantum GV bounds [5] and Hamming and Singleton bounds for general asymmetric subsystem codes [6]. Asymmetric MDS codes have been characterized [6,7].
Gates
Taking into account noise bias can reduce resource overhead in magic-state distillation schemes [8].A CNOT gate continuously connected to the identity cannot be noise-bias-preserving in finite dimensions [9][10; Appx. A].Fault Tolerance
Fault-tolerant noise-bias-preserving computation scheme [9].Fault-tolerant circuits converting between asymmetric and symmetric subsystem codes [11,12].Threshold
A lower bound on concatenated thresholds with CSS codes under biased noise [13].Notes
See Ref. [14] for a brief review of asymmetric quantum codes.Cousins
- Distance-balanced code— Distance balancing is a procedure that can convert an asymmetric CSS code into a less asymmetric one.
- Subsystem surface code— Subsystem surface codes perform well against biased circuit-level noise [15].
- Clifford-deformed surface code (CDSC)— Random Clifford deformation can improve performance of surface codes against biased noise [16,17].
- XY surface code— XY surface codes perform well against biased noise [18].
- XYZ product code— XYZ product codes can be used to protect against biased noise [19].
- XYZ color code— XYZ color codes perform well against biased noise [20].
- Twisted XZZX toric code— Twisted XZZX codes perform well against biased noise [21–23]; see also Ref. [24].
- XZZX surface code— The XZZX surface code can be foliated for a noise-bias preserving MBQC [25] or FBQC [26] protocol; see also [27].
- Concatenated Steane code— Concatenating while taking into account noise bias can reduce resource overhead [12].
- Quantum maximum-distance-separable (MDS) code— An asymmetric Singleton bound and linear programming bounds for asymmetric CSS codes have been formulated [4]. Asymmetric MDS codes have been characterized [7].
- 2D hyperbolic surface code— Asymmetric 2D hyperbolic surface codes have been constructed [28].
- Kitaev surface code— The surface code on the honeycomb tiling is an asymmetric CSS code [28].
- Calderbank-Shor-Steane (CSS) stabilizer code— In the context of comparing weight as well as of determining distances for noise models biased toward \(X\)- or \(Z\)-type errors, an extended notation for asymmetric CSS block quantum codes is \([[n,k,(d_X,d_Z),w]]\) or \([[n,k,d_X/d_Z,w]]\).
- Quantum Reed-Muller code— Asymmetric quantum RM codes have been constructed [4; Lemma 4.1].
- Finite-geometry LDPC (FG-LDPC) code— FG-LDPC codes can be used to construct asymmetric CSS codes [29][4; Lemma 4.1].
- Hermitian code— Hermitian codes can be used to construct asymmetric Galois-qudit CSS codes [30].
- Galois-qudit RS code— Asymmetric Galois-qudit RS codes have been constructed [31–33].
- Bacon-Shor code— Bacon-Shor code parameters against bit- and phase-noise can be optimized by changing the block geometry, yielding good performance against biased noise [34]. A fault-tolerant teleportation-based computation scheme for asymmetric Bacon-Shor codes is effective against highly biased noise [35].
- Two-component cat code— Two-component cat codes admit a bias-preserving CNOT gate that is continuously connected to the identity [10,36].
- Square-lattice GKP code— GKP code parameters against position and momentum displacements can be tuned by the choice of lattice (e.g., square vs rectangular).
- Binomial code— Binomial code parameters against loss/gain errors and dephasing can be tuned.
- Quantum spherical code (QSC)— QSC code parameters against loss/gain errors and Gaussian rotations can be tuned.
- Quantum parity code (QPC)— QPC parameters against bit- and phase-noise can be tuned.
- EA qubit stabilizer code— Entanglement can help decode asymmetric quantum codes [37].
- Hastings-Haah Floquet code— Floquet codes can be adapted for asymmetric noise [38].
- GKP-surface code— Using rectangular lattices accounts for asymmetric noise and improves the GKP-surface threshold to \(0.58\) [39].
- Tensor-network code— Quantum Lego and more general tensor-network code optimization for biased noise can be done using reinforcement learning [40,41].
- Compass code— Families of random compass codes perform well against biased noise and spatially dependent (i.e., asymmetric) noise [42]. Clifford deformations can enhance the performance of compass codes against biased noise [43].
- 3D lattice stabilizer code— Applying Clifford deformations to various 3D stabilizer codes, including the 3D surface code, 3D color code, X-cube model code, the SFSL code, yields a \(50\%\) code capacity threshold under infinitely biased Pauli noise [17].
- Galois-qudit BCH code— Asymmetric quantum BCH codes have been constructed [2,32,44,45][4; Lemma 4.4], including subsystem BCH codes [6,32].
- Abelian LP code— The Abelian LP construction has been adapted to accommodate noise bias, yielding bias-tailored LP codes [46].
Primary Hierarchy
References
- [1]
- A. M. Steane, “Simple quantum error-correcting codes”, Physical Review A 54, 4741 (1996) arXiv:quant-ph/9605021 DOI
- [2]
- L. Ioffe and M. Mézard, “Asymmetric quantum error-correcting codes”, Physical Review A 75, (2007) arXiv:quant-ph/0606107 DOI
- [3]
- M. F. Ezerman, S. Jitman, S. Ling, and D. V. Pasechnik, “CSS-Like Constructions of Asymmetric Quantum Codes”, IEEE Transactions on Information Theory 59, 6732 (2013) arXiv:1207.6512 DOI
- [4]
- P. K. Sarvepalli, A. Klappenecker, and M. Rötteler, “Asymmetric quantum codes: constructions, bounds and performance”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, 1645 (2009) DOI
- [5]
- R. Matsumoto, “Two Gilbert–Varshamov-type existential bounds for asymmetric quantum error-correcting codes”, Quantum Information Processing 16, (2017) arXiv:1705.04087 DOI
- [6]
- S. A. Aly, “Asymmetric and Symmetric Subsystem BCH Codes and Beyond”, (2008) arXiv:0803.0764
- [7]
- M. F. EZERMAN, S. JITMAN, H. M. KIAH, and S. LING, “PURE ASYMMETRIC QUANTUM MDS CODES FROM CSS CONSTRUCTION: A COMPLETE CHARACTERIZATION”, International Journal of Quantum Information 11, 1350027 (2013) arXiv:1006.1694 DOI
- [8]
- P. Webster, S. D. Bartlett, and D. Poulin, “Reducing the overhead for quantum computation when noise is biased”, Physical Review A 92, (2015) arXiv:1509.05032 DOI
- [9]
- P. Aliferis, F. Brito, D. P. DiVincenzo, J. Preskill, M. Steffen, and B. M. Terhal, “Fault-tolerant computing with biased-noise superconducting qubits: a case study”, New Journal of Physics 11, 013061 (2009) arXiv:0806.0383 DOI
- [10]
- J. Guillaud and M. Mirrahimi, “Repetition Cat Qubits for Fault-Tolerant Quantum Computation”, Physical Review X 9, (2019) arXiv:1904.09474 DOI
- [11]
- A. M. Stephens, Z. W. E. Evans, S. J. Devitt, and L. C. L. Hollenberg, “Asymmetric quantum error correction via code conversion”, Physical Review A 77, (2008) arXiv:0708.3969 DOI
- [12]
- Z. W. E. Evans, A. M. Stephens, J. H. Cole, and L. C. L. Hollenberg, “Error correction optimisation in the presence of X/Z asymmetry”, (2007) arXiv:0709.3875
- [13]
- P. Aliferis and J. Preskill, “Fault-tolerant quantum computation against biased noise”, Physical Review A 78, (2008) arXiv:0710.1301 DOI
- [14]
- L. Wang and S. Zhu, “On the Construction of Optimal Asymmetric Quantum Codes”, (2014) arXiv:1403.7755
- [15]
- O. Higgott and N. P. Breuckmann, “Subsystem Codes with High Thresholds by Gauge Fixing and Reduced Qubit Overhead”, Physical Review X 11, (2021) arXiv:2010.09626 DOI
- [16]
- A. Dua, A. Kubica, L. Jiang, S. T. Flammia, and M. J. Gullans, “Clifford-Deformed Surface Codes”, PRX Quantum 5, (2024) arXiv:2201.07802 DOI
- [17]
- E. Huang, A. Pesah, C. T. Chubb, M. Vasmer, and A. Dua, “Tailoring Three-Dimensional Topological Codes for Biased Noise”, PRX Quantum 4, (2023) arXiv:2211.02116 DOI
- [18]
- D. K. Tuckett, S. D. Bartlett, and S. T. Flammia, “Ultrahigh Error Threshold for Surface Codes with Biased Noise”, Physical Review Letters 120, (2018) arXiv:1708.08474 DOI
- [19]
- Z. Liang, Z. Yi, F. Yang, J. Chen, Z. Wang, and X. Wang, “High-dimensional quantum XYZ product codes for biased noise”, (2024) arXiv:2408.03123
- [20]
- J. F. S. Miguel, D. J. Williamson, and B. J. Brown, “A cellular automaton decoder for a noise-bias tailored color code”, Quantum 7, 940 (2023) arXiv:2203.16534 DOI
- [21]
- A. Robertson, C. Granade, S. D. Bartlett, and S. T. Flammia, “Tailored Codes for Small Quantum Memories”, Physical Review Applied 8, (2017) arXiv:1703.08179 DOI
- [22]
- J. P. Bonilla Ataides, D. K. Tuckett, S. D. Bartlett, S. T. Flammia, and B. J. Brown, “The XZZX surface code”, Nature Communications 12, (2021) arXiv:2009.07851 DOI
- [23]
- Q. Xu, N. Mannucci, A. Seif, A. Kubica, S. T. Flammia, and L. Jiang, “Tailored XZZX codes for biased noise”, (2022) arXiv:2203.16486
- [24]
- B. Röthlisberger, J. R. Wootton, R. M. Heath, J. K. Pachos, and D. Loss, “Incoherent dynamics in the toric code subject to disorder”, Physical Review A 85, (2012) arXiv:1112.1613 DOI
- [25]
- J. Claes, J. E. Bourassa, and S. Puri, “Tailored cluster states with high threshold under biased noise”, npj Quantum Information 9, (2023) arXiv:2201.10566 DOI
- [26]
- H. Bombín, C. Dawson, N. Nickerson, M. Pant, and J. Sullivan, “Increasing error tolerance in quantum computers with dynamic bias arrangement”, (2023) arXiv:2303.16122
- [27]
- A. M. Stephens, W. J. Munro, and K. Nemoto, “High-threshold topological quantum error correction against biased noise”, Physical Review A 88, (2013) arXiv:1308.4776 DOI
- [28]
- C. D. de Albuquerque, G. G. La Guardia, R. Palazzo Jr., C. R. de O. Q. Queiroz, and V. L. Vieira, “Euclidean and Hyperbolic Asymmetric Topological Quantum Codes”, (2021) arXiv:2105.01144
- [29]
- P. K. Sarvepalli, A. Klappenecker, and M. Rotteler, “Asymmetric quantum LDPC codes”, 2008 IEEE International Symposium on Information Theory (2008) arXiv:0804.4316 DOI
- [30]
- M. F. Ezerman and R. Kirov, “Nonbinary Quantum Codes from Two-Point Divisors on Hermitian Curves”, (2011) arXiv:1102.3605
- [31]
- La Guardia, G. G., R. Palazzo, and C. Lavor. "Nonbinary quantum Reed-Solomon codes." Int. J. Pure Applied Math 65.1 (2010): 55-63.
- [32]
- S. A. Aly, “On Quantum and Classical Error Control Codes: Constructions and Applications”, (2008) arXiv:0812.5104
- [33]
- G. G. La Guardia, “Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes”, Quantum Information Processing 11, 591 (2011) DOI
- [34]
- J. Napp and J. Preskill, “Optimal Bacon-Shor codes”, (2012) arXiv:1209.0794
- [35]
- P. Brooks and J. Preskill, “Fault-tolerant quantum computation with asymmetric Bacon-Shor codes”, Physical Review A 87, (2013) arXiv:1211.1400 DOI
- [36]
- S. Puri et al., “Bias-preserving gates with stabilized cat qubits”, Science Advances 6, (2020) arXiv:1905.00450 DOI
- [37]
- Y. Fujiwara and M.-H. Hsieh, “Adaptively correcting quantum errors with entanglement”, (2011) arXiv:1104.5004
- [38]
- F. Setiawan and C. McLauchlan, “Tailoring Dynamical Codes for Biased Noise: The X\(^3\)Z\(^3\) Floquet Code”, (2024) arXiv:2411.04974
- [39]
- C. Vuillot, H. Asasi, Y. Wang, L. P. Pryadko, and B. M. Terhal, “Quantum error correction with the toric Gottesman-Kitaev-Preskill code”, Physical Review A 99, (2019) arXiv:1810.00047 DOI
- [40]
- V. P. Su, C. Cao, H.-Y. Hu, Y. Yanay, C. Tahan, and B. Swingle, “Discovery of Optimal Quantum Error Correcting Codes via Reinforcement Learning”, (2023) arXiv:2305.06378
- [41]
- C. Mauron, T. Farrelly, and T. M. Stace, “Optimization of Tensor Network Codes with Reinforcement Learning”, (2023) arXiv:2305.11470
- [42]
- M. Li, D. Miller, M. Newman, Y. Wu, and K. R. Brown, “2D Compass Codes”, Physical Review X 9, (2019) arXiv:1809.01193 DOI
- [43]
- J. A. Campos and K. R. Brown, “Clifford-Deformed Compass Codes”, (2024) arXiv:2412.03808
- [44]
- S. A. Aly, “Asymmetric quantum BCH codes”, 2008 International Conference on Computer Engineering & Systems (2008) DOI
- [45]
- G. G. La Guardia, “New families of asymmetric quantum BCH codes”, Quantum Information and Computation 11, 239 (2011) DOI
- [46]
- J. Roffe, L. Z. Cohen, A. O. Quintavalle, D. Chandra, and E. T. Campbell, “Bias-tailored quantum LDPC codes”, Quantum 7, 1005 (2023) arXiv:2202.01702 DOI
Page edit log
- Victor V. Albert (2024-04-04) — most recent
Cite as:
“Asymmetric quantum code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/asymmetric_qecc