Abelian LP code[1,2] 

Description

An LP code for Abelian group \(G\). The case of \(G\) being a cyclic group is a GB code (a.k.a. a quasi-cyclic LP code) [2; Sec. III.E]. A particular family with \(G=\mathbb{Z}_{\ell}\) yields codes with constant rate and nearly constant distance.

The Abelian LP construction has been adapted to accommodate noise bias, yielding bias-tailored LP codes [3]. See Refs. [1,2,4,5] for other explicit examples.

Rate

Expander LP codes for Abelian groups like \(\mathbb{Z}_{\ell}\) for \(\ell=\Theta(n / \log n)\) yield constant-rate codes with parameters \([[n, k = \Theta(n), d = \Theta(n / \log n)]]\) [2]; this construction can be derandomized by being reformulated as a balanced product code [6]. Other explicit versions of codes with such parameters have been developed [7].

Decoding

Ensemble BP decoder for codes without short cycles of length 4 [8].Efficient decoder correcting order \(\Theta(n/\log n)\) errors [9].

Parents

Children

  • Bivariate bicycle (BB) code — Bivariate bicycle codes are Abelian LP codes over groups of the form \(\mathbb{Z}_{r} \times \mathbb{Z}_{s}\).
  • Generalized bicycle (GB) code — A code GB\((a,b)\) with circulants of size \(\ell\) is a special case of a lifted-product code LP\((A,B)\) code over the Abelian group algebra \(\mathbb{F}_q[\mathbb{Z}_{\ell}]\) associated with a cyclic group, with \(1\times 1\) matrices \(A=a(x)\), \(B=b(x)\) given by the corresponding polynomials. Quasi-cyclic LP codes, i.e., LP codes constructed from cyclic groups, are equivalent to GB codes [2; Sec. III.E].

Cousins

  • Quasi-cyclic LDPC (QC-LDPC) code — QC-LDPC codes can be lifted to yield various Abelian LP codes [4,8,10]. Conversely, the Abelian LP construction yiels notable families of QC-LDPC codes [7].
  • Finite-geometry LDPC (FG-LDPC) code — FG-LDPC codes can be used to construct Abelian LP codes [8].
  • Expander LP code — Expander LP codes for Abelian groups like \(\mathbb{Z}_{\ell}\) for \(\ell=\Theta(n / \log n)\) yield constant-rate codes with parameters \([[n, k = \Theta(n), d = \Theta(n / \log n)]]\) [2]; this construction can be derandomized by being reformulated as a balanced product code [6]. Other explicit versions of codes with such parameters have been developed [7].
  • Asymmetric quantum code — The Abelian LP construction has been adapted to accommodate noise bias, yielding bias-tailored LP codes [3].
  • Concatenated GKP code — GKP codes have been concatenated with Abelian LP codes [4] that are in turn based on QC-LDPC codes [11].

References

[1]
P. Panteleev and G. Kalachev, “Degenerate Quantum LDPC Codes With Good Finite Length Performance”, Quantum 5, 585 (2021) arXiv:1904.02703 DOI
[2]
P. Panteleev and G. Kalachev, “Quantum LDPC Codes With Almost Linear Minimum Distance”, IEEE Transactions on Information Theory 68, 213 (2022) arXiv:2012.04068 DOI
[3]
J. Roffe et al., “Bias-tailored quantum LDPC codes”, Quantum 7, 1005 (2023) arXiv:2202.01702 DOI
[4]
N. Raveendran et al., “Finite Rate QLDPC-GKP Coding Scheme that Surpasses the CSS Hamming Bound”, Quantum 6, 767 (2022) arXiv:2111.07029 DOI
[5]
Q. Xu et al., “Constant-Overhead Fault-Tolerant Quantum Computation with Reconfigurable Atom Arrays”, (2023) arXiv:2308.08648
[6]
N. P. Breuckmann and J. N. Eberhardt, “Balanced Product Quantum Codes”, IEEE Transactions on Information Theory 67, 6653 (2021) arXiv:2012.09271 DOI
[7]
F. G. Jeronimo et al., “Explicit Abelian Lifts and Quantum LDPC Codes”, (2021) arXiv:2112.01647
[8]
S. Miao et al., “A Joint Code and Belief Propagation Decoder Design for Quantum LDPC Codes”, (2024) arXiv:2401.06874
[9]
L. Golowich and V. Guruswami, “Decoding Quasi-Cyclic Quantum LDPC Codes”, (2024) arXiv:2411.04464
[10]
T. R. Scruby, T. Hillmann, and J. Roffe, “High-threshold, low-overhead and single-shot decodable fault-tolerant quantum memory”, (2024) arXiv:2406.14445
[11]
M. P. C. Fossorier, “Quasi-Cyclic Low-Density Parity-Check Codes From Circulant Permutation Matrices”, IEEE Transactions on Information Theory 50, 1788 (2004) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: abelian_lifted_product

Cite as:
“Abelian LP code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/abelian_lifted_product
BibTeX:
@incollection{eczoo_abelian_lifted_product, title={Abelian LP code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/abelian_lifted_product} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/abelian_lifted_product

Cite as:

“Abelian LP code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/abelian_lifted_product

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qudits_galois/stabilizer/qldpc/balanced_product/lp/matrix/abelian_lifted_product.yml.