Finite-geometry LDPC (FG-LDPC) code[1] 

Description

LDPC code whose parity-check matrix is the incidence matrix of points and hyperplanes in either a Euclidean or a projective geometry. Such codes are called Euclidean-geometry LDPC (EG-LDPC) and projective-geometry LDPC (PG-LDPC), respectively. Such constructions have been generalized to incidence matrices of hyperplanes of different dimensions [2].

Parents

Cousins

References

[1]
Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check codes based on finite geometries: a rediscovery and new results”, IEEE Transactions on Information Theory 47, 2711 (2001) DOI
[2]
Heng Tang et al., “Codes on finite geometries”, IEEE Transactions on Information Theory 51, 572 (2005) DOI
[3]
Latin Squares and Their Applications (Elsevier, 2015) DOI
[4]
S. A. Aly, “A Class of Quantum LDPC Codes Constructed From Finite Geometries”, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference (2008) arXiv:0712.4115 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: pg_ldpc

Cite as:
“Finite-geometry LDPC (FG-LDPC) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/pg_ldpc
BibTeX:
@incollection{eczoo_pg_ldpc, title={Finite-geometry LDPC (FG-LDPC) code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/pg_ldpc} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/pg_ldpc

Cite as:

“Finite-geometry LDPC (FG-LDPC) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/pg_ldpc

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/bits/tanner/regular_tanner/regular_ldpc/pg_ldpc.yml.