[Jump to code hierarchy]

Algebraic LDPC code

Description

LDPC code whose parity check matrix is constructed explicitly (i.e., non-randomly) from a particular graph [1,2] or an algebraic structure such as a combinatorial design [35], balanced incomplete block design [6], a partial geometry [7], or a generalized polygon [8,9]. The extra structure and/or symmetry [10] of these codes can often be used to gain a better understanding of their properties.

Cousins

References

[1]
G. A. Margulis, “Explicit constructions of graphs without short cycles and low density codes”, Combinatorica 2, 71 (1982) DOI
[2]
C. A. Kelley, D. Sridhara, and J. Rosenthal, “Tree-Based Construction of LDPC Codes Having Good Pseudocodeword Weights”, IEEE Transactions on Information Theory 53, 1460 (2007) DOI
[3]
S. J. Johnson and S. R. Weller, “Regular low-density parity-check codes from combinatorial designs”, Proceedings 2001 IEEE Information Theory Workshop (Cat. No.01EX494) DOI
[4]
S. J. Johnson and S. R. Weller, “Construction of low-density parity-check codes from Kirkman triple systems”, GLOBECOM’01. IEEE Global Telecommunications Conference (Cat. No.01CH37270) DOI
[5]
S. J. Johnson and S. R. Weller, “Resolvable 2-designs for regular low-density parity-check codes”, IEEE Transactions on Communications 51, 1413 (2003) DOI
[6]
B. Vasic and O. Milenkovic, “Combinatorial Constructions of Low-Density Parity-Check Codes for Iterative Decoding”, IEEE Transactions on Information Theory 50, 1156 (2004) DOI
[7]
S. J. Johnson and S. R. Weller, “Codes for iterative decoding from partial geometries”, Proceedings IEEE International Symposium on Information Theory, DOI
[8]
P. O. Vontobel and R. M. Tanner, “Construction of codes based on finite generalized quadrangles for iterative decoding”, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252) DOI
[9]
Z. Liu and D. A. Pados, “LDPC Codes From Generalized Polygons”, IEEE Transactions on Information Theory 51, 3890 (2005) DOI
[10]
Tanner, R. Michael, Deepak Sridhara, and Tom Fuja. "A class of group-structured LDPC codes." Proc. ISTA. 2001.
[11]
C. A. Kelley, “On codes designed via algebraic lifts of graphs”, 2008 46th Annual Allerton Conference on Communication, Control, and Computing (2008) DOI
[12]
C. A. Kelley and J. L. Walker, “LDPC codes from voltage graphs”, 2008 IEEE International Symposium on Information Theory (2008) DOI
[13]
L. W. Beineke, R. J. Wilson, J. L. Gross, and T. W. Tucker, editors , Topics in Topological Graph Theory (Cambridge University Press, 2009) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: algebraic_ldpc

Cite as:
“Algebraic LDPC code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/algebraic_ldpc
BibTeX:
@incollection{eczoo_algebraic_ldpc, title={Algebraic LDPC code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/algebraic_ldpc} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/algebraic_ldpc

Cite as:

“Algebraic LDPC code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/algebraic_ldpc

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/bits/tanner/algebraic/algebraic_ldpc.yml.